
Computer Systems and -architecture
Project 6: Full Datapath

1 Ba INF 2023-2024

Kasper Engelen
kasper.engelen@uantwerpen.be

Time Schedule
Projects are solved in pairs of two students. Projects build on each other, to converge
into a unified whole at the end of the semester. During the semester, you will be evaluated
three times. At these evaluation moments, you will present your solution of the past projects
by giving a demo and answering some questions. You will immediately receive feedback, which
you can use to improve your solution for the following evaluations.

For every project, you submit a small report of the project you made by filling in verslag.html
completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in one tgz or zip archive, as explained on the course’s website, and submit your
report to the exercises on Blackboard.

• Report deadline: Monday December 18, 2023, 22u00

• Evaluation and feedback: Thursday/Friday December 21/22, 2023

Project
Read sections 4.1, 4.2, 4.3 and 4.4 of Chapter 4. You can use all Logisim libraries for this
assignment.

1. In the previous assignment, we used the ALU operations as instructions and added two
additional instructions (lw and sw). Next to these instructions, in this assignment we also
support branch and jump instructions.
We introduce a number of new instructions for jump and branch. Because you should be
able to branch, you will have to connect your program counter to your datapath so that
it can jump to a given address instead of just the next instruction.
Implement the instructions described in the table below (“imm” stands for “immediate”,
“uns” stands for “unsigned” and “sig” stands for “signed, two’s complement”). You already
have implemented the R-type instructions and the lw/sw instructions in the previous
assignment.

1

mailto:kasper.engelen@uantwerpen.be

Computer Systems and -architecture 1 Ba INF, 2023-2024

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 name instruction description
0000 0 rd 0000 0000 zero1 zero rd $rd := 0
0001 0 rd 0 rs 0001 not1 not rd rs $rd := !$rs
0001 0 rd imm (sig.) 0010 jr jr rd imm $pc := $rd + imm
0001 target address 0011 j j imm $pc := addr
0001 target address 0100 jal3 jal imm $r7:= $pc + 1; $pc := addr
0001 0 rd 0 rs 1010 inv1 inv rd rs $rd := -$rs
0001 0 rd 0 rs 1011 sll1 sll rd rs $rd := $rs << 2
0001 0 rd 0 rs 1100 srl1 srl rd rs $rd := $rs >> 2
0001 0 rd 0 rs 1101 sla1 sla rd rs $rd := $rs * 2
0001 0 rd 0 rs 1110 sra1,2 sra rd rs $rd := $rs / 2
0001 0 rd 0 rs 1111 cp1 cp rd rs $rd := $rs
0010 0 rd 0 rs 0 rt and1 and rd rs rt $rd := $rs & $rt
0011 0 rd 0 rs 0 rt or1 or rd rs rt $rd := $rs | $rt
0100 0 rd 0 rs 0 rt add1 add rd rs rt $rd := $rs + $rt
0101 0 rd 0 rs 0 rt sub1 sub rd rs rt $rd := $rs - $rt
0110 0 rd 0 rs 0 rt lt1 lt rd rs rt $rd := $rs < $rt ? 1 : 0
0111 0 rd 0 rs 0 rt gt1 gt rd rs rt $rd := $rs > $rt ? 1 : 0
1000 0 rd 0 rs 0 rt eq1 eq rd rs rt $rd := $rs = $rt ? 1 : 0
1001 0 rd 0 rs 0 rt neq1 neq rd rs rt $rd := $rs != $rt ? 1 : 0
1010 0 rd 0 rs imm (uns.) lw lw rd rs imm $rd := MEM[$rs+imm]
1011 0 rd 0 rs imm (uns.) sw sw rd rs imm MEM[$rs+imm] := $rd
1100 0 rd imm (sig.) ldi ldi rd imm $rd := imm
1101 0 rd 0 rs imm (sig.) addi addi rd rs imm $rd := $rs + imm
1110 0 rd 0 rs imm (sig.) beq beq rd rs imm $rd == $rs ? $pc := $pc + 1 + imm
1111 0 rd 0 rs imm (sig.) blt blt rd rs imm $rd < $rs ? $pc := $pc + 1 + imm

1 R-type instruction.
2 Integer division.
3 Register r7 will be reserved for the return address of the jal instruction.

2. Once done, your datapath can correctly execute a program written in machine language, as
the behaviour of arithmetic, branching and memory operations is now fully implemented!
You can use the script Test.py as follows (note the -f flag to denote the simulation of a
full datapath):
python Test_2324_zit1_datapath.py -f -t <test-file> -c <circ-file>
You can use labels for branching and jumping in your tests. When testing the full datapath,
you can only perform checks at the end of the program. (This is because of branching: it
would not make sense to check a register value in the middle of a loop, as it can have a
different value in a different iteration of the loop.)

2

	Time Schedule
	Project

