
Computer Systems and -architecture

Project 3: ALU

1 Ba INF 2025-2026

Sam Pieters
sam.pieters@uantwerpen.be

Time Schedule

Projects are solved in pairs of two students. Projects build on each other, to converge
into a unified whole at the end of the semester. During the semester, you will be evaluated
three times. At these evaluation moments, you will present your solution of the past projects
by giving a demo and answering some questions. You will immediately receive feedback, which
you can use to improve your solution for the following evaluations.

For every project, you submit a small report of the project you made by filling in verslag.html
completely. A report typically consists of 500 words and a number of drawings/screenshots. Put
all your files in one tgz or zip archive, as explained on the course’s website, and submit your
report to the exercises on Blackboard. Links to external files (e.g., dropbox, onedrive) are not
accepted!

• Report deadline: Wednesday November 5, 2025, 22u00

• Evaluation and feedback: Wednesday November 12, 2025

Project

Read section C.5 of Appendix C. You can only use the following Logisim libraries for this
assignment: Base, Wiring, Gates, Plexers, Input/Output.

1. Use the Logisim ALU GroupXX.circ file provided on the course page. Rename the
file so that ’XX’ is your group number. Open the file in Logisim. Do not change the
‘main’ circuit. Import your adder from the previous exercise by choosing from the menu
‘Project’ - ‘Load Library’ - ‘Logisim Library...’. Then select your Logisim file that includes
the adder. Your adder will be loaded in an extra library, below ‘Wiring’, ‘Gates’, ‘Plexers’,
etc. You can now reuse your adder. You will have to complete the ‘12-bit ALU’ circuit
in this assignment. You can only make use of the Logisim libraries ‘Wiring’, ‘Gates’ and
‘Plexers’ (not e.g., ‘Arithmetic’).

2. Design a 12-bit ALU that has the following interface:

• 4-bit input: operation code

• 12-bit input: operand a

• 12-bit input: operand b

• 12-bit output: result of the ALU calculation

• 1-bit output: true in case of error/overflow

1

mailto:sam.pieters@uantwerpen.be


Computer Systems and -architecture 1 Ba INF, 2025-2026

3. Use your 12-bit carry lookahead adder from the previous project. Make all
necessary circuits yourself. You may use the built-in multiplexers and demultiplexer, as
well as wiring, splitter, etc.

4. Implement the operations below, giving each operation a 4-bit binary code. Your ALU
will execute the right operation according to a 4-bit operation input. Make sure to test
everything, including the different possible overflow cases!

Your ALU should be able to perform the operations listed below.

• OR (Name: or; ALU operation: 0000).
Example:
a 000001001010

b 111110010101

result 111111011111

• AND (Name: and; ALU operation: 0001).
Example:
a 000001001010

b 111111010101

result 000001000000

• numeric addition (two’s complement) (Name: add; ALU operation: 0010).
Example:
a 000001001010 (74)
b 111110010101 (-107)

result 111111011111 (-33)
Mind overflow!

• numeric subtraction (two’s complement) (Name: sub; ALU operation: 0011).
Example:
a 000001001010 (74)
b 000001101010 (106)

result 111111100000 (-32)
Mind overflow!

• less than (two’s complement) (Name: lt; ALU operation: 0100). Results in 1 if
a < b, 0 if a ≥ b.
Example:
a 000001001010 (74)
b 111110010101 (-107)

result 000000000000 (false)
Make sure that this operation can never produce an overflow error!

• greater than (two’s complement) (Name: gt; ALU operation: 0101). Results in
1 if a > b, 0 if a ≤ b.
Example:
a 000001001010 (74)
b 111110010101 (-107)

result 000000000001 (true)
Make sure that this operation can never produce an overflow error!

• equals (Name: eq; ALU operation: 0110). Results in 1 if a = b, 0 if a ̸= b.
Example:
a 000001001010 (74)
b 111110010101 (-107)

result 000000000000 (false)
Make sure that this operation can never produce an overflow error!

2



Computer Systems and -architecture 1 Ba INF, 2025-2026

• not equals (Name: neq; ALU operation: 0111). Results in 1 if a ̸= b, 0 if a = b.
Example:
a 000001001010 (74)
b 111110010101 (-107)

result 000000000001 (true)
Make sure that this operation can never produce an overflow error!

• NOT (Name: not; ALU operation: 1000).
Example:
a 000001001010

result 111110110101

• numeric inverse (two’s complement) (Name: inv; ALU operation: 1001).
Example:
a 000001001010 (74)

result 111110110110 (-74)
Mind overflow!

• shift left logical (two’s complement) (Name: sll; ALU operation: 1010).
Example:
a 000010101010

result 000101010100
Make sure that this operation can never produce an overflow error!

• shift right logical (two’s complement) (Name: srl; ALU operation: 1011).
Example:
a 000010101010

result 000001010101
Make sure that this operation can never produce an overflow error!

• shift left arithmetic (two’s complement) (Name: sla; ALU operation: 1100).
This implements ”times two”.
Example:
a 000000101010 (42)

result 000001010100 (84)
Mind overflow!

• shift right arithmetic (two’s complement) (Name: sra; ALU operation: 1101).
This implements ”divide by two” (integer division - test behaviour in Python).
Example:
a 000000101010 (42)

result 000000010101 (21)
Make sure that this operation can never produce an overflow error!

• generate 0 (Name: zero; ALU operation: 1110).
Example:
result 000000000000

• no operation (Name: noop; ALU operation: 1111).
Example:
a 000001001010

result 000001001010

5. Run the test files for your ALU. Do this during the development of your ALU, not af-
terwards! A test file is given for each operation; run it on your circuit using the pro-
gram Test 2526 zit1.py. You need to install Python (http://python.org/) to run
Test 2526 zit1.py. Download Test 2526 zit1.py, tests.zip (from the MSDL-website

3

http://python.org/


Computer Systems and -architecture 1 Ba INF, 2025-2026

or Blackboard) and logisim-generic-2.7.1.jar (http://sourceforge.net/projects/
circuit/files/2.7.x/2.7.1/) and save in the same folder as your adapted ALU GroupXX.circ

project. The program takes a file containing ALU tests as input, and a ALU GroupXX.circ

Logisim file. It runs all ALU tests and reports test failures. For this assignment you will
have to do the following:

• Test your ALU using the provided set of test files.

– Every test file contains 1 test per line. Example of a simple test:
add 1 2 3

It should be read as follows: we want to test the ’add’-operation, with operand
’1’ and ’2’ (in decimal notation), and the expected outcome of the ALU should
be ’3’ (also in decimal notation). This expected outcome is generally called the
“oracle”, as it predicts the outcome of the test.

– You see that for each test, you have to provide the operation you want to test
(you can choose between zero, or, and, add, sub, lt, gt, eq, neq, not, inv, sla,
sra, sll, srl, noop), values for operands a and b, and an oracle for each test. This
oracle will be compared to the actual outcome of your ALU for this operation and
with inputs a and b in ALU GroupXX.circ. If the operation only uses the first
operand (e.g., inv), you will still have to provide two operands, but the second
one should be ignored by your ALU. So another valid test would be:
inv 1 0 -1

Where the second operand of value ’0’ will be ignored. This will test whether
the numeric inverse of 1 is -1.

– You can also provide binary values for your tests, so if you want to test the or-
operation, you can write the following for example:
or 000010101010 000001010010 000011111010

– You can also test for overflow by adding a ’1’ to your line of code. For example,
this would be a valid test:
add 2000 2000 0 1

Adding 2000 to 2000 would indeed generate an overflow for our 12-bit ALU as
4000 cannot be represented in a 2’s complement 12-bit notation. This test has
an added ’1’ at the end of the line, denoting that this test should generate an
overflow. In this case, the test program will not compare results (therefore the
result is simply ’0’ here). However, if your ALU does not generate an overflow,
this test will fail!

– Bear in mind that you should not create test cases that are wrong, e.g.:
gt 100 101 1

This would be wrong, as 100 is not greater than 101, so the oracle must be 0
instead of 1. This test would produce a failure for a correct circuit, so double-
check your test cases! Instead, a correct test would be:
gt 100 101 0

• All files must be in the same directory. The program must be executed from the
console as follows:
python Test 2526 zit1.py -a -i op test.txt -c ALU GroupXX.circ

with op test.txt as the file containing your ALU tests and ALU GroupXX.circ as

4

http://sourceforge.net/projects/circuit/files/2.7.x/2.7.1/
http://sourceforge.net/projects/circuit/files/2.7.x/2.7.1/


Computer Systems and -architecture 1 Ba INF, 2025-2026

your Logisim file (change XX to your group number). You can use the -h option
to show the usage of the script. Try to execute the command before starting to
implement the circuit.

– As you see, some lines are outputted to the console, ending with a line denoting
how many tests were executed (depending on how many test lines there are in
the test file) and how many of them failed or produced an error.

– If not successful, tests can be ’errors’ or ’failures’. An error means that some of
the resulting signals were ’Error’ signals or ’don’t care’ signals (’E’ or ’x’, or a
red/blue signal line in Logisim). A failure means that either the expected result
did not match what you have specified in your test, or the expected error value
did not match. If you have failure or error tests, there will be some information
about this failure/error in the output.

• If the script does not work as expected (e.g., error messages seem to be wrong), let
me know as soon as possible! This script is meant to aid you in your projects, and
should not slow you down!

6. To prepare for the next lab session, read sections C.7, C.8 and C.10 of Appendix C.

5


	Time Schedule
	Project

