Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation to tackle Complexity

Hans Vangheluwe

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation

- Modelling and Simulation for ...
- The Modelling Relationship
- 2 Causes of Complexity
 - Large Number of Components
 - Components in Different Formalisms
 - Non-compositional/Emergent Behaviour
 - Uncertainty
- 3

Dealing with Complexity

- Multiple Abstraction Levels
- Optimal Formalism
- Multi-Formalism
- Multiple Views/Aspects

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

Simulation ... when too costly/dangerous

analysis \leftrightarrow design

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

Simulation ... real experiment not ethical

training, physical simulation

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

Simulation ... evaluate alternatives

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

Simulation ... "Do it Right the First Time"

Causes of Complexit

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for ...

"shooting" problems

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for ...

defining a "hit"

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for ...

optimizing a "performance metric"

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

optimal solution...s

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

Modelling/Simulation ... and code/app Synthesis

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for ...

The spectrum of uses of models

- Documentation
- Formal Verification (all models, all behaviours)
- Model Checking (one model, all behaviours)
- Simulation (one model, one behaviour)
- Synthesis

- set of all "contexts" in which model is valid
- includes experiment descriptions: parameters, initial conditions

 \sim re-use, testing

Modelling and Simulation	Causes of Complexity	Dealing with Complexity	Multi-Paradigm Modelling
The Modelling Relationship			

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

The Modelling Relationship

Jean Bézivin

Everything is a model !

Jean-Marie Favre

Nothing is a model !

Hans Vangheluwe

Model everything !

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Dealing with Complexity

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Large Number of Components

Crowds

www.3dm3.com

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Large Number of Components

Number of Components – hierarchical (de-)composition

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Components in Different Formalisms

Diversity of Components: Paper Mill

www.gov.karelia.ru

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Components in Different Formalisms

Paper Mill Model

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Components in Different Formalisms

Multiple Formalisms: Power Window

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Non-compositional/Emergent Behaviour

Non-compositional/Emergent Behaviour

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Non-compositional/Emergent Behaviour

Engineered Emergent Behaviour

Mode	lling and Simulation	Causes of Complexity ○○○○○○●	Dealing with Complexity	Multi-Paradigm Modelling
Unce	rtainty			
	 Often rel continuo 	ated to level of ab us vs. discrete	straction: for examp	ble

www.engr.utexas.edu/trafficSims/

• uncertainty \neq imprecise \neq not rigorous

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Guiding principle

minimize accidental complexity, only essential complexity remains

Fred P. Brooks. No Silver Bullet – Essence and Accident in Software Engineering. Proceedings of the IFIP Tenth World Computing Conference, pp. 1069–1076, 1986.

http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

No Free Lunch!

Solutions often introduce their own accidental complexity

- multiple abstraction levels (need morphism)
- optimal formalism (need precise meaning)
- multiple formalisms (need relationship)
- multiple views (need **consistency**)

Modelling	and	Simulation
0000000	0000	00000

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Different Abstraction Levels – properties preserved

Multiple Abstraction Levels	
Modelling and Simulation Causes of Complexity Dealing with Complexity Multi-Paradigm 000000000000000000000000000000000000	n Modelling

Modelling	and	Simulation

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Abstraction Relationship

foundation: the information contained in a model M. Different questions (properties) P = I(M) which can be asked concerning the model.

These questions either result in true or false.

Abstraction and its opposite, refinement are relative to a non-empty set of questions (properties) *P*.

- If M₁ is an abstraction of M₂ with respect to P, for all p ∈ P:
 M₁ ⊨ p ⇒ M₂ ⊨ p. This is written M₁ ⊒_P M₂.
- M_1 is said to be a *refinement* of M_2 iff M_1 is an *abstraction* of M_2 . This is written $M_1 \sqsubseteq_P M_2$.

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Optimal Formalism

Modelling	and	Simulation	
00000000000000			

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multi-Formalism

Components in Different Formalisms Check Requirement 6 Convert AADC (SI) moveU Driver UP armature current Driver Dew ssenger down Motor_and_Electronics Window Switches position Control Obstack Test_Cases Window Mechanics **Obstacle Effects** Visualization1 www.mathworks.com/products/demos/simulink/PowerWindow/html/PowerWindow1.html

Modelling	and	Simulation
0000000	0000	00000

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multi-Formalism

Controller, using Statechart(StateFlow) formalism

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multi-Formalism

Mechanics subsystem

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multiple Views/Aspects

Multiple (consistent !) Views (in \neq Formalisms)

(work by Esther Guerra and Juan de Lara)

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multiple Views/Aspects

View: Runtime Diagram

Modelling	and	Simulation	
00000000000000			

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multiple Views/Aspects

View: Events Diagram

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multiple Views/Aspects

View: Protocol Statechart

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multi-Paradigm Modelling (minimize accidental complexity)

• at the most appropriate level of abstraction

 using the most appropriate formalism(s)
 Differential Algebraic Equations, Petri Nets, Bond Graphs, Statecharts, CSP, Queueing Networks, Lustre/Esterel, ...

• with transformations as first-class models

Pieter J. Mosterman and Hans Vangheluwe.

Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation 80(9):433-450, September 2004.

Special Issue: Grand Challenges for Modeling and Simulation.