
Discrete Event Modelling and Simulation

Hans Vangheluwe

For a class of formalisms labelled discrete-event, system models are described at an abstraction level where the time base
is continuous (

�
), but during a bounded time-span, only a finite number of relevant events occurs. These events can cause

the state of the system to change. In between events, the state of the system does not change. This is unlike continuous
models in which the state of the system may change continuously over time.
Discrete-event formalisms are clearly at a high level of abstraction. This abstraction is often appropriate for realistic
representation of a system’s behaviour. Furthermore, as in between events, the state of the system does not change, a
discrete-event simulator need not explicitly represent the state of the system at non-event times. This allows for highly
efficient simulation as compared to continuous simulation, where in principle, state information must be represented at
each point in continuous time.
The high level of abstraction may however introduce simulation artifacts which do not pertain to real-world behaviour.
In particular, event simultaneity whereby multiple distinct events occur at exactly the same time may be due to an insuf-
ficiently detailed discrete-event model. The DEVS formalism and its derivatives rigourously describe the semantics of
such event collisions. A detailed presentation of the semantics of pinnacles and mythical states, which occur when events
are used for respectively time-scale abstraction and parameter abstraction of continuous phenomena in hybrid models,
is given by Mosterman and Biswas in [MB02].

The simple example system depicted in Figure 1 will be used to illustrate relevant concepts. At the physical level, the
system consists of a cashier serving arriving customers, one at a time. Customers queue if the cashier is not available
(serving another customer). Here, the state of the system consists of the state of the queue and that of the cashier. The
queueing discipline is First In First Out (FIFO) and individual customers are assumed not to have any distinguishing
features (such as age, or number of items bought). Thus, it is meaningful to model the state of the queue by means of the
queue length, a natural number. The cashier can be in either the Idle or the Busy state. The dynamics of the system is
determined by:

� the arrival pattern of customers characterized by their Inter Arrival Time (IAT) distribution,� the time required by the cashier to serve a customer characterized by the Service Time (ST) distribution,� the logical sequence of customers progressing through the system under different conditions (queue empty/not
empty, cashier Busy/Idle).

In Figure 2, an example behaviour of the cashier/queue system, its reaction to a particular input segment of customer
arrivals, starting from an initial state, is depicted.

1 Definitions

The following (due to Nance [Nan81]) enable a correct understanding of different types of discrete-event simulation
models.

� An instant is a value of system time at which the value of at least one attribute of an object can be assigned.� An interval is the duration between two successive instants.� A time span is the contiguous succession of one or more intervals.� The state of an object at a particular instant is the enumeration of all attribute values of that object at that instant
(mathematically a tuple, element of the product set of all attribute value sets). The state consists of all the object
states at a particular instant.

1 Definitions 2

Physical View

Queue Cashier

Departure

Arrival

Departure

Queue

Abstract View

Cashier
[ST distribution][IAT distribution]

Arrival

Figure 1: Single server queuing system

state=
queue_length x cashier_state

queue_length

T

1

2

0

10 20 30 40 50

cashier_state

Busy

Idle

T10 20 30 40 50

T

Input Events

Arrival

10 20 30 40 50

E1 E2

T

Output Events

Departure

10 20 30 40 50

E3 E4

Figure 2: Queueing system state trajectory

2 From Untimed to Timed formalisms 3

Cust2 Process

Cust1 Activity

Cust2 Arrival
Cust2 Start Queueing

Cust2 End pay cashier
Cust2 Leave

t

Cust2 End Queueing
Cust2 Start pay cashier

Cust2 Activity

Event

Cust1 Arrival
Cust1 Start pay cashier

Cust1 End pay cashier
Cust1 Leave

Cust1 Process

Cust2 Activity
queue pay cashier

pay cashier

Figure 3: Event/Object Activity/Process

A simulation model has a static structure and a dynamic structure. The static structure specifies the possible states of the
model. The dynamic structure specifies how the state changes over time. The static structure is usually described as a
collection of objects and their attributes [CS92]. There are different approaches, known as world views, to representing
the dynamic structure of a model. The following concepts are at the basis of the different world views:

� An activity is the state of an object over an interval.� An event is a change of object state, occuring at an instant, that initiates an activity precluded prior to that instant. An
event is determined if the condition for event occurence depends exclusively on system time. In hybrid simulation
modelling this is called a time event. Otherwise, the event is contingent (dependent on system conditions). In hybrid
modelling, this is called a state event.� An object activity is the state of an object between two events describing successive state changes for that object.
Other events may occur, related to state changes of other objects.� A process is the succession of states of an object over a time span. This is equivalent to the contiguous succession
of one or more object activities.

Events, activities and processes for the cashier/queue example are depicted in Figure 3. For a given problem, the following
steps are followed to determine what the events are:

1. Identify objects and their attributes.

2. Identify attributes of the system.

3. Define what causes changes in attribute value as an event.

Often extra state variables are added to allow calculation of performance metrics such as counters, minima and maxima,
averages, and frequency distributions of relevant variables. In discrete event simulation, one is mostly interested in the
values of performance metrics such as average queue length and utilization of resources. This is in contrast with contin-
uous simulation, where one is mostly interested in the explicit state trajectory. The performance metrics are output at the
end of a simulation run.

In the following sections, the different world views are presented by means of an operational definition of their simulation
kernels.

2 From Untimed to Timed formalisms

Previously, untimed formalisms such as State Automata, State Charts, and Petri Nets were introduced. In these for-
malisms, only the order in which events occur is represented (in the form of a time-base �), not the explicit (time-base

3 The Event Scheduling world view 4

red
50

green
100

yellow
15

δ

δ

δ

to_red to_yellowto_green

schedule
in 15

schedule
in 50

schedule
in 100

yellow

red

green

to_red to_green to_yellow to_red

states

events

t50 100 15

state trajectory

Finite State Automaton Event (Scheduling) Graph

red green

yellow

to_green

to_yellow

to_red

Figure 4: Finite State Automaton and Event Graph models

�
) time at which they occur. On the one hand, this implies a loss of information. On the other hand, it allows one to

describe classes behaviour and prove properties of these. All the above formalisms can be extended to include explicit
timing information. In particular, State Automata can be extended to include the time the system stays in a particular
state before making a transition to the next state. As shown in Figure 4 (the state trajectory of a traffic light) it is always
possible to construct an Event Graph which has as nodes, the transitions, and as edges, the time interval after which
the next transition is scheduled to occur. This demonstrates the link with the event scheduling discrete event world view
introduced in the next section.

3 The Event Scheduling world view

In the Event Scheduling world view, a model describes, for each of the events, the event’s effect

� on the state,� on the future behaviour of the system. This is achieved by scheduling new events into the future.

An event scheduling model for the single queue, single server example is given below:

3 The Event Scheduling world view 5

declare variables:
t : Time
queue_length : PosInt
cashier_state : {Idle, Busy}

declare events:
start, arrival, departure, end

define events:

start event:
/* scheduled first automatically by simulator */

/* initializations */
queue_length = 0
cashier_state = Idle

/* schedule end of simulation */
schedule end absolute end_time

/* schedule first arrival */
schedule arrival relative 0

arrival event:
schedule arrival relative Random(IATmean, IATspread)
if (queue_length == 0)
if (cashier_state == Idle)
cashier_state = Busy
schedule departure relative Random(SERVmean, SERVspread)
else
queue_length++

else /* queue_length != 0 */
queue_length++

departure event:
if (queue_length == 0)
cashier_state = Idle
else /* queue_length != 0 */
queue_length--
schedule departure relative Random(SERVmean, SERVspread)

end event:
/* terminates simulation */
/* process/output performance metrics */
print time, queue_length /* current */
print average_queue_length

As shown in Figure 5, an event scheduling simulation kernel uses two (global) data structures. One contains the state
variables declared in the model. The other contains scheduled event notices in an event list, ordered by increasing time
and decreasing priority. When scheduled, events are always added from the rear. Priorities are used to choose between
events occurring at the same time (collisions). The state variables may be augmented by additional performance variables
for calculation of minima, maxima, mean, standard deviation, etc. of state variables and combinations of them. An event
scheduling kernel operates by ordering (according to increasing time) scheduled events in the event list and iteratively
removing and processing the head of that list until the list becomes empty. The event time of the event notice is used to
advance the simulation time. Depending on the event type of the event notice, the appropriate event notice is invoked.
This routine may modify the system’s state and schedule new events into the future by placing event notices in the event
list. As an example, part of the evolution of the state and event list during a typical event scheduling simulation of the
Cashier/Queue model is shown in Figure 6.
In the spirit of the Event Scheduling formalism,

3 The Event Scheduling world view 6

start

initializations (schedule "start" event)

time flow mechanism:
select next event

from event list

event
routine

1

event
routine
"end"

output
performance

metrics;
cleanup;

...

end

event
routine

k

event
routine

k+1
... ...

Event List:
[(ev1,t1),(ev2,t2), ...]

state variables;
performance variables

time

Figure 5: Event Scheduling simulation kernel

� initialization of the system state as well as pre-scheduling of events may be put in a “start” event. This event is
automatically put in the event list and subsequently processed (first) using the same procedure as for any other
event.� halting the simulation at a certain simulation time can be achieved by scheduling a special “end” event which is
recognized by the simulation procedure as the last event to be processed (even if more event notices are present on
the event list). This event may contain terminal processing instructions, mainly generating output of performance
measures and other gathered statistics. Caveat: it may be necessary to re-schedule the “end” event or to give it the
lowest priority to avoid missing an event occurring exactly at the time of the “end” event.

The above informally describes an event scheduling model in terms of a system state, events, an event list, and how an
event influences the system state and event list (schedule new events in future). An event scheduling model is simulated
by a simulation procedure which iteratively advances simulation time, updates the event list, as well as the system state.

The model representation as well as the simulation procedure are presented here in mathematical form, to facilitate the
description (in the next section) of the mapping onto the DEVS formalism.
For the sake of simplicitly, we currently ignore

� output of the model, as this can easily be added and does not change the essence of the formalism;� external events interrupting the autonomous behaviour of the system, as this is not normally part of the event
scheduling formalism. This implies that hierarchies of event scheduling models can not be described. External
events and hierarchy can be added easily after mapping onto DEVS.

The structure of an event scheduling model ES is

ES ��� T � E � S � EL � δt � δη � δS �	�
In this structure, T is the Time Base

T � � �

3 The Event Scheduling world view 7

ARR
10

Current_event

State set: queue_size x cashier_statustime Event List

(0 , Idle)0

(0 , Busy)10

20 (1 , Busy)

30 (0 , Busy)

Initialized to:
 empty queue
 idle cashier
 arrival pre-scheduled at time 10

Process current event:
 set time to current event time
 update state:
 cashier busy
 schedule next arrival at t+IAT()
 schedule departure at t+ST()
 remove current event from list

Process current event:
 set time to current event time
 update state:
 cashier remains busy
 queue length increases
 schedule next arrival at t+IAT()
 remove current event from list

Process current event:
 set time to current event time
 generate departure output
 update state:
 cashier remains busy
 (customer from queue)
 queue length decreases
 schedule departure at t+ST()
 remove current event from list

DEP
50

ARR
100

Current_event

DEP
30

ARR
100

Current_event

ARR
20

DEP
30

Current_event

Figure 6: Event Scheduling simulator at work

3 The Event Scheduling world view 8

The finite set E contains unique event types η such as “arrival of customer 1” and “departure of customer 5”. Note that an
actual event occurrence is characterized by a tuple
 η � t � including the event type and the event instant. When present on
an event list, this tuple is called an event notice. Events may be divided into “classes” (C) such as arrivals and departures
(of different entities):

E ���
i C

Ei �
It may be necessary to define an order relationship � over E:
 E ����� to “encode” priorities. For example, arrival customer �
arrivalmanager � departurecustomer � departuremanager means arrival events have lower priority than departure events
and within these two event classes, managers have higher priority than customers. This is a common approach to encode
event selection when it is necessary to choose between multiple events occurring simultaneously (a collision) such as�
 η1 � t �	��
 η2 � t �	� ������� on the event list. If priorities do not resolve a collision to one single
 η � t � , the selection becomes im-
plementation dependent. This is not portable across implementations and leads to different simulation results on different
platforms. This means simulation experiments are not repeatable. If this situation occurs, more detail will typically be
added to the priorities ordering
 � � .
The event list EL is a possibly empty set (or even a bag if the same event is allowed to occur multiple times at the same
time) of event notices

EL � 2E � T �
For example,

EL � �
 η1 � t1 �� ��� � ��
 η2 � t2 �� ��� � �! � � ��"
 ηn � tn �� ��� � �#�
ev1 ev2 � � evn

Note how, in an implementation-oriented description of ES, an event list would be described as an ordered list. In a more
denotational fashion, not insisting on a particular implementation data structure, we use a set, with the order imposed by
a select f irst
$� operator. This leaves room for efficient, possibly parallel, implementation.

select f irst : 2E � T % /0 & E ' T �
EL & ev ()�*
 η (+� t (�� �

where
t (� min , T - .0/ � t 12
 η � t �3� EL � ;

η (� select
�
 η 12
 η � t (�4� EL �#�

In the above, it is assumed EL 5� /0. Simulation halts when the event list becomes empty and thus select f irst will never
be applied to an empty event list (as specified in the simulation procedure Algorithm 1).

The select tie-breaking function is needed to select between simultaneously occuring events. As mentioned before, select
is typically implemented based on an ordering relationship � over E:

select : 2E & E ��
η1 �� � � �� ηn � & min , E - .0/ � η1 �� � � �� ηn �#�

Applying select should yield a unique result. This will only be the case if there is a strict ordering (no equalities) over
the set of events E .
The state set S is modified at event times by event handlers. S may obviously be a product set: S �6' iSi.

For each η � E , an event handler is a structure

 δt � δS � δη � �

This allows one to specify the effects of handling an event:

1. modification of the system state � S,

2. scheduling a new event η in the future.

3 The Event Scheduling world view 9

S

T

s

δ_S

δ_t(η,s)

δ_S(η,s)

δ_η(η,s)η

δ_t(η,s)t t+

Figure 7: Event handler �7
 δt � δS � δη �

In the Event Scheduling formalism as described here, there is only a single modification of the system state, as well as only
one event scheduled. This can be done without loss of generality as multiple state changes and future events scheduled
are all done at the same instant of time. Multiple state changes and events scheduled can be emulated (modelled) by a
sequence of events, each only performing one state change and one scheduling. Note how this is only true if no output is
generated for intermediate state changes.

Alternately, the formalism could easily be adopted to lump a sequence of state changes into one resultant state change,
and to schedule a series of events in the future.
As shown in Figure 7, the event handler structure specifies:

1. At what time in the future to schedule a new event. The time delay δt between the current time and the time the
new event is scheduled at is based on the current event and system state:

δt : E ' S & �98
0 - 8 ∞ �

2. How to modify the system state based on the current event and system state:

δS : E ' S & S �
3. The event type to be scheduled. This is given by δη based on the current event and system state:

δη : E ' S & E �
The above concludes the structure of the model formalism. Algorithm 1 describes a simulation procedure for simulating
an event scheduling model ES. To carry out the simulation, the model (event types, state set, and event handlers) is given
together with intial conditions:

� the initial event list (pre-scheduled events),� the initial state s � S.

Note how lines 4 and 5 in Algorithm 1 are a generalization of what is common in list-based event scheduling implemen-
tations:

 η f irst � t f irst �;: head
 EL �	�

4 The Activity Scanning world view 10

Algorithm 1 Event Scheduling simulation procedure
1: s : initial state � S

�
initialize the state �

2: EL : initial event list
�
initialize the event list (pre-scheduled events) �

3: while
 EL 5� /0 �) do
4: t f irst : min , T - .0/ � t 12
 η � t �<� EL �
5: η f irst : select
 � η 12
 η � t f irst �4� EL �
6: t : t f irst

�
advance current time to t f irst �

7: η : η f irst
�
event type currently processed �

8: ∆t : δt
 η � s �
9: η (new : δη
 η � s �

10: EL :=
 EL %
 η � t ���?> �
 η @A� t B ∆t � � � % : remove the current event, > : add a scheduled event �
11: s : δS
 η � s � �

update state �
12: end while

where “head” is the standard ordered list operator which selects the first element of the list.

Similarly, the approach on line 10 is a generalization of updating of the event list in list-based event scheduling imple-
mentations:

EL : insert ,C, T - .0/C- , E - .0/A/
�
 η @ � t B ∆t �	� tail
 EL ���	�
with “insert” and “tail”, the standard ordered list operators. The position where an event notice is “insert”ed is determined
by the its timestamp as well as its priority. If both are equal, notices are added from the rear. “tail” produces the remainder
of EL after removing its “head”.

4 The Activity Scanning world view

In the Activity Scanning world view, a model describes conditions which will activate activities. This representation (and
its semantics described below) resembles that used in declarative AI languages such as Prolog [CM87].
An activity scanning model for the single queue, single server example is given below.

5 The Three Phase Approach world view 11

declare (and initialize) variables:
t : Time
queue_length : PosInt = 0
cashier_state : {Idle, Busy} = Idle
t_arrival : Time = 0
t_depart : Time = plusInf

declare activities:
queue_pay, depart, end

queue_pay activity
condition: t >= t_arrival
actions:
if (queue_length == 0)
if (cashier_state == Idle)
keep queue_length == 0
cashier_state = Busy
t_depart = t + Random(SERVmean, SERVspread) /* service time */
else
queue_length++

else /* queue_length != 0 */
queue_length++, keep cashier_state == Busy
t_arrival = t + Random(IATmean, IATspread) /* inter arrival time */

depart activity
condition: t >= t_departure
actions:
if (queue_length == 0)
cashier_state = Idle
else /* queue_length != 0 */
queue_length--, keep cashier_state == Busy
t_depart = t + Random(SERVmean, SERVspread) /* service time */

end activity
condition: t >= t_end
actions:
print t, queue_length /* current */
print avg_queue_length /* performance metric */

As shown in Figure 8, an activity scanning simulation kernel uses a discrete time step to advance time. During the
activity scan phase, the solver checks for an activity whose condition (a boolean function of the time variable and the
state variables) is true and processes it. This scan is continued as long as some activity condition evaluates to true. If none
of the activities is enabled, the time flow phase is executed again, advancing time. In the spirit of the Activity Scanning
formalism, a “start” and “end” activity may be defined with semantics similar to their Event Scheduling counterparts.

5 The Three Phase Approach world view

As Activity Scanning uses a fixed time step, it is not efficient. On the one hand, the time step needs to be chosen as small
as the smallest time interval possible between two events to correctly model behaviour. On the other hand, some events
may be extremely far apart in time (many times the smallest time between events). For such long time intervals, an activity
scanning simulator will unnecessarily check all conditions at each point in time despite the fact that the conditions do not
change.
In the Three Phase Approach world view, Activity Scanning is combined with Event Scheduling. Activities may be sched-
uled explicitly into the future as in the Event Scheduling world view. In addition, at event times, all activity conditions
are checked as in the Activity Scanning world view. Two types of activities are represented:

� “bound to occur activities” (B): are scheduled in an Event Scheduling fashion and describe the effect of uncondi-
tional state changes on the current state and on the future (by scheduling new B activities into the future).� “conditional activities” (C): are invoked at event times if their condition evaluates to true. Describe the effect of
unconditional state changes on the current state and on the future (by scheduling new B activities into the future).

6 The Process Interaction world view 12

start

initializations

time flow mechanism:
discrete time step

activity
1

activity
"end"

end

activity
k

activity
k+1... ...

state variables;
performance variables

condition

actions

condition

actions

condition

actions

condition

activity scan

phase 1

phase 2

output
performance

metrics;
cleanup;

...

discrete time variable

Figure 8: Activity Scanning simulation kernel

As shown in Figure 9, a three phase approach simulation kernel combines the scheduling of B activities of the Event
Scheduling world view (with its associated time flow mechanism of advancing time to the time of the first event on the
Event List) with the invocation of conditionional C activities of the Activity Scanning world view. Again “start” and “end”
activites may be defined. It will be noticed that these and all other activities may be described as B or as C activities.
This shows the conceptual flaw in the Three Phase Approach: mixing different world views in a single model makes the
model hard to understand and maintain.

6 The Process Interaction world view

At the highest level of abstraction, in the Process Interaction world view, a template is given for the life of transactions
or processes as they progress through a number of activities or blocks. In Figure 10, a process interaction model for
the single queue, single server example is given in the General Purpose Simulation System (GPSS) language and its
corresponding graphical notation [Gor96, Sch74, BCIN98, LK91]. The arrival of transactions (customers) is modelled in
the GENERATE block. The inter-arrival time of customers is uniformly distributed over the interval 10 +/- 5 time units. The
QUEUE/DEPART block combination collects queueing statistics of the queue formed by customers waiting for the capacity
1 resource “cashier” modelled by the SEIZE/RELEASE block combination. Once the cashier facility is seized, a customer
is served for a time sampled from a uniform distribution over the interval 5 +/- 3 time units. This is modelled by an
ADVANCE block. At the TERMINATE block, the life of transaction ends.
As shown in Figure 11, a process interaction simulation kernel employs three main data structures: the Future Event List
(FEL) and the Current Event List (CEL) (the “chains” FEC and CEC in GPSS terminology) are internal to the simulator
whereas the third one represents the Process Interaction model. A transaction is always present in exactly one of the two
lists. A transaction data structure contains

� a unique identifier,� a priority,� a move-time, the time at which the transaction is scheduled (by an ADVANCE block for example) to the next block
in the model.� a number of transaction attributes described by the modeller (“parameters” in GPSS terminology).

6 The Process Interaction world view 13

start

initializations

time flow mechanism:
select earliest time on EL

activity
C"end"

end

state variables;
performance variables

condition

actions

A phase

Event List (EL):
[(activityB1,t1),(activityB2,t2), ...]execute all B activities

on EL due now
B phase

activity
B"end"...

actions
output

performance metrics;
cleanup;

...

time

activity
C1

activity
Ck

activity
C(k+1)... ...

condition

actions

condition

actions

condition

actions

activity scan C phase

activity
B1

activity
Bk

activity
B(k+1)... ...

actions actions actions

Figure 9: Three Phase Approach simulation kernel

 GENERATE 10, 5
 QUEUE wait
 SEIZE cashier
 DEPART wait
 ADVANCE 5, 3
 RELEASE cashier
 TERMINATE 1

10,5

5,3

Q

Q

Figure 10: Process Interaction (GPSS) model of a cashier/queue system

6 The Process Interaction world view 14

Initializations

output
performance metrics;

cleanup;
...

FEL: [xact1,x1ct2, ...]

CEL

xact1’
xact2’
xact3’

.

.

.

increasing move-time

increasing priority

start

end

Clock Update Phase

Scan Phase

more
xacts to move ?

terminate
simulation ?

current time =
move time of first xact on
Future Events List (FEL)

transfer all xacts with
move-time = current time
to the Current Events List;

order by priority

move next object on CEL
through as far as possible

through its process description

Process Interaction model
(e.g., GPSS block diagram)

 GENERATE 10, 5
 QUEUE wait
 SEIZE cashier
 DEPART wait
 ADVANCE 5, 3
 RELEASE cashier
 TERMINATE 15,3

Q

Q

Y

N

Y

N
10,5

Figure 11: Process Interaction simulation kernel

The FEL is a list of transactions ordered by increasing move-time (starting from the head). For equal move-times, the
order is not specified. The CEL is a list of transactions ordered by decreasing priority (starting from the head). After an
initialization phase, the simulation proceeds iteratively through two phases:

1. During the clock update phase, the current simulation time is advanced to the move time of the first transaction
on the FEL. Subsequently, all transactions on the FEL with move-time equal to the current time are moved to the
CEL. On the CEL, transactions are ordered by priority.

2. During the scan phase, the CEL is searched from beginning (high priority transactions) till end (low priority
transactions) for transactions which can be moved through the model. If a transaction is found, it is moved as far
as possible through the model. A transaction may become blocked when it enters an ADVANCE for example. Then,
the simulator schedules it to leave the block at a later time by putting it on the FEL. When a transaction reaches a
TERMINATE block, it is destroyed (removed from the CEL). The scan phase is repeated as long as it is possible to
move transactions through the model. When no more transactions can be moved, and the simulation’s termination
condition does not yet evaluate to true, the clock update phase is invoked again. The termination condition is
often encoded as a global Termination Counter being decremented to zero or below. It is obvious that blocked
transactions may reside on the CEL well beyond their move-time, waiting for some system condition.

Before completely terminating a simulation, performance metrics are output and data structures are cleaned up.
Figure 12 depicts the life of a single transaction from its creation, over its repeated migration to and from the Current

7 Relationships between discrete event world views 15

Transaction Creation

Transaction Destruction

IAT=0

CEL FEL
ADVANCE

move time = clock time

TERMINATE

Y N

Figure 12: A transaction’s life during a Process Interaction simulation

Event List and the Future Event List, until its final destruction in a TERMINATE block.

7 Relationships between discrete event world views

Figure 13 gives an overview of the relationships between “different” discrete formalisms. On the left hand side, for-
malisms are shown whose time flow mechanism is a fixed time advance. On the right hand side, formalisms with a
“discrete event” time flow (clock advances to event times only) are shown. It is noted that the Activity Scanning world
view really belongs under Discrete Time formalisms though it is always erroneously included with Discrete Event for-
malisms.

All discrete event formalisms presented are non-modular. Model components such as event handlers (Event Scheduling
world view), activities (Activity Scanning world view) and process blocks (Process Interaction world view) are not
encapsulated entities, only interacting with their environment through interfaces. Rather, they directly influence global
state variables as well as other components.

The dashed arrow lines in Figure 13 denote transformation of a model described in a source formalism (start of arrow
line) into that same model described in the target formalism (end of the arrow line). Original and transformed model
are considered “equivalent” when they produce the same state trajectory when simulated from identical intial conditions.
In the figure, all transformations are towards the DEVS formalism which is described in the next section. There, it is
also shown how an Event Scheduling model may be transformed into an “equivalent” DEVS model. None of the other
transformations in Figure 13 is described. A rigourous treatment of these transformations (including equivalence proofs)
is future work. The essence of all these transformations is the construction of a modular Coupled DEVS model from
the non-modular specifications. This is achieved by explicitly representing dependencies by means of couplings between
modular components. To automate such transformations, dependency analysis needs to be automated. This approach
is deemed feasible thanks to the experience with dependency analysis for continuous models (Differential Algebraic
Equations) as described in a later section.

References

[BCIN98] Jerry Banks, John S. Carson II, and Barry L. Nelson. Discrete-Event System Simulation. Prentice Hall of
India, second edition, 1998.

[CM87] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer Verlag, third edition, 1987.

REFERENCES 16

‘‘Discrete’’ Formalisms

Discrete Event Formalisms

Statecharts

DEVS

Event Scheduling

Activity
 Scanning

Process Interaction

Discrete Time Formalisms

Finite State
Automata

Difference
Equations

Three Phase
Approach

Figure 13: World Views classification

[CS92] Bruce A. Cota and Robert G. Sargent. A modification of the process interaction world view. ACM Transactions
on Modeling and Computer Simulation, 2(2):109–129, April 1992.

[Gor96] Geoffrey Gordon. System Simulation. Prentice Hall of India, second edition, 1996.

[LK91] Averill M. Law and David W. Kelton. Simulation Modeling and Analysis. McGraw-Hill, 1991.

[MB02] Pieter J. Mosterman and Gautam Biswas. A modeling and simulation methodology for hybrid dynamic phys-
ical systems. Transactions of the Society for Computer Simulation International, 2002.

[Nan81] Richard E. Nance. The time and state relationships in simulation modeling. Communications of the ACM,
24(4):173–179, April 1981.

[Sch74] Thomas J. Schriber. Simulation Using GPSS. Wiley, 1974.

