The Modelling and Simulation Process

- 1. History of Modelling and Simulation
- 2. Modelling and Simulation Concepts
- 3. Levels of Abstraction
- 4. Experimental Frame
- 5. Validation
- 6. Studying a mass-spring system
- 7. The Modelling and Simulation Process

Modelling and simulation: past

(1950–): Numerical simulations: numerical analysis, statistical analysis, simulation languages (CSSL, discrete-event world views).

focus: performance, accuracy

(1981–): Artificial Intelligence: model = knowledge representation Use AI techniques in modelling, AI uses simulation ("deep" knowledge) focus: knowledge

(1988–): Object-oriented modelling and simulation

focus: object orientation, later "agents", non-causal modelling

Modelling and simulation: past, present, future

(1993–): Multi-formalism, Multi-paradigm (2001 –)

- 1. Do it right (optimally) the first time (market pressure)
- 2. Complex systems: multi-formalism
- 3. Hybrid: continuous-discrete, hardware/software
- 4. Exchange (between humans/tools) and re-use (validated model)
- 5. User focus: do not expect user to know details (software: glueing of components), need for **tools**

Behaviour (homo)morphism

Verification and Validation

Carl Popper: Falsification, Confidence

System, Base Model, Lumped Model

$$D_{BaseModel} \equiv D_{RealSystem}$$

$$D_{LumpedModel}||E \equiv D_{RealSystem}||E$$

Experimental Frame Structure

 \sim Programming Language Types, Pre/Post-conditions

Models and matching Experimental Frames

Experimental Frame and Validity

Replicative Validity (≡: within accuracy bounds):

$$D_{LumpedModel}||E \equiv D_{BaseModel}||E$$

Predictive Validity:

$$F_{LumpedModel}||E \subseteq F_{BaseModel}||E$$

Structural Validity (morphism $\stackrel{\triangle}{=}$):

$$LumpedModel || E \stackrel{\triangle}{=} BaseModel || E$$

Simulator Verification:

$$D_{Simulator} \equiv D_{LumpedModel}$$

Modelling (and Simulation) Choices

- 1. System Boundaries and Constraints: Experimental Frame (EF)
- 2. Level of Abstraction
- 3. Formalism(s)
- 4. Level of Accuracy

System under study: T, l controlled liquid

System Boundaries (Experimental Frame)

- Inputs: liquid flow rate, heating/cooling rate
- Outputs: observed level, temperature
- Contraints: no overflow/underflow, one phase only (no boiling)

Abstraction: detailed (continuous) view, ALG + ODE formalism

Inputs (discontinuous \rightarrow hybrid model):

- Emptying, filling flow rate φ
- Temperature of inflowing liquid *T*_{in}
- Rate of adding/removing heat W

Parameters:

- Cross-section surface of vessel A
- Specific heat of liquid *c*
- Density of liquid ρ

State variables:

- Temperature *T*
- Level of liquid *l*

Outputs (sensors):

• is_low,is_high,is_cold,is_hot

$$\begin{cases} \frac{dT}{dt} &= \frac{1}{l} \left[\frac{W}{c\rho A} - \phi (T - T_{in}) \right] \\ \frac{dl}{dt} &= \phi \\ is_low &= (l < l_{low}) \\ is_high &= (l > l_{high}) \\ is_cold &= (T < T_{cold}) \\ is_hot &= (T > T_{hot}) \end{cases}$$

Abstraction: high-level (discrete) view, FSA formalism

Levels of abstraction: trajectories (behaviour)

Levels of accuracy

- Depends on "equality" metric (definition of accuracy)
- Depends on choice of formalism
- Depends on choice of numerical approximation

Levels of abstraction: behaviour morphism

A Modelling and Simulation Exercise: the Mass-Spring system

Knowledge Sources

- A Priori Knowledge: Laws of Physics
- Goals, Intentions: Predict trajectory given Initial Conditions, "optimise" behaviour, . . .
 - 1. Analysis
 - 2. Design
 - 3. Control
- Measurement Data

Measured Data

Experimental Frame

- Room Temperature, normal humidity, . . .
- Frictionless, Ideal Spring, ...
- Apply deviation from rest position
- Observe position as function of time

Structure Characterisation

- n-1-order polynomial will perfectly fit n data points
- Ideal Spring: *Feature* = maximum amplitude constant
- Spring with Damping: *Feature* = amplitute decreases

⇒ Ideal Spring

Building the model from a-priori knowledge

Newton's Law

$$F = M \frac{d^2 \Delta x}{dt}$$

Ideal Spring

$$F = -K\Delta x$$

$$\downarrow$$

$$\frac{d^2\Delta x}{dt^2} = -\frac{K}{M}\Delta x$$

Model representation

```
CLASS Spring "Ideal Spring": DAEmodel :=
 OBJ F left: ForceTerminal,
 OBJ F_right: ForceTerminal,
 OBJ RestLength: LengthParameter,
 OBJ SpringConstant: SCParameter,
 OBJ x: LengthState,
 OBJ v: SpeedState,
F_{\text{left}} - F_{\text{right}} = - SpringConstant * (x - RestLength),
 DERIV([x, [t,]]) = v,
EF_assert(x - RestLength < RestLength/100),
},
```

From Model to Simulation

Block-diagrams

analog computers, Continuous System Modelling Program (CSMP)

- From (algebraic) equation to Block Diagram
- Higher order differential equations

Time-slicing Simulator

Experimentation

- 1. Model
- 2. Parameters (constant for each simulation run)
- 3. Initial Conditions
- 4. Input (file, interactive, real system)
- 5. Output (file, plot, real system)
- 6. Solver Configuration
- 7. Experiment type (simulation, optimization, parameter estimation = model calibration)

Model Calibration: Parameter Fit

From Here On ...

- Virtual Experiments: simulation, optimisation, what-if, ...
- Validation/Falsification

The Modelling and Simulation *Process*

Model uses

