System specification

Hans Vangheluwe

When studying existing systems, observations (of structure and behaviour) are the only tangible artifacts we have at
our disposal [Kli85]. A modeller may, based on observations and/or insight, build progressively more complex models
of a system. Here, we present a hierarchy of abstract model structures. Each structure elaborates on the previous one,
introducing (and representing) more detailed knowledge about the system. The reverse operation, going from a model
containing more information to a less detailed one, must be shown to be possible. This, as some questions about the
behaviour and structure of the system are better answered at lower levels in the hierarchy. In particular, explicit behaviour
in the form of input and output trajectories, described at the lowest level, is often required.

In object-oriented terminology, a simulation model consists of model objects (often used to represent real-world objects,
entities, or concepts) as well as relationships among those objects. In general, a model object is anything that can be
characterized by one or more attributes to which values are assigned. Attributes are either called indicative if they describe
an aspect inherent to the object or relational if they relate the object to one or more other objects. The values assigned to
attributes have a type in the programming language sense (i.e., , a set of allowed values they must belong to).

Mathematical sets and operations defined on those sets are the starting point for abstract system representation or mod-
elling. Simple finite sets of numbers {1,2,...,9}, identifiers {a,b,...,z}, as well as infinite sets such as NNt R, and
R* are typically used. Often, specific meaning is given to sets and their members. The set EV for example is a finite set
denoting arrival and departure events in a queueing system

EV = {ARRIVAL,DEPARTURE}.

As in the discrete event abstraction, discussed later in greater detail, only a finite number of events are assumed to occur
in a bounded time interval, the non-event symbol ¢ is introduced to denote the absence of events changing the state of the
system. The event set is subsequently enriched with ¢

EV®=EVU{¢}.

This demonstrates the use of basic set operations such as U. To describe multiple attributes of a system, the set product
X is used
AxB={(a,b)la € A,b € B}.

1 Time base and Segments

Every simulation model must have an indexing attribute which, at some level of abstraction will enable state transitions
[Nan81]. Time is the most common indexing attribute. Time is special in that it inexorably progresses: the current state
and behaviour of a system can only modify its future, never its past. This concept is often called causality: a cause must
always occur before a consequence. In a simulation context, the indexing attribute is referred to as system time. Any set T’
can serve as a formalisation of time. A nominal relationship = may be added to T to denote equality. To obtain a usable
time base however, an order relation on the elements of T is needed:

TimeBase = (T, <)

This relation has properties

1 Time base and Segments 2

t3

t1 12 6 7

t4 t5

Figure 1: Partially ordered time base

e transitive: A< BAB<C=A<C,
o irreflexive: A £ A,
e antisymmetric: A < B=-B £ A.

This formalises the notion of order in time. The ordering relationship may be total (linear): each element of 7' can be
related to every other element. A partial ordering where not all elements of T can be compared is useful in modelling
uncertainty or concurrency. In Figure 1 for example, the nodes denote time instants and the edges denote “precedes in
time” (<). t, precedes both #3 and #4 in time, but no information is available about the relative position in time of 73 and
t4. In case of concurrent behaviour, causality must not be violated within the individual concurrent threads, but the time-
ordering between concurrent events may be left unspecified [Mil93]. Mathematically, partial ordering leads to a lattice
structure.

For total ordering, it must be possible to compare any two elements of 7
Vil €Tt <’V <tve="t.

In case of total ordering, intervals may be defined. With intervals, the past 7;; and future 7}, of an instant # € T may be
defined
Ti=A{tteT,t<1},
Ty ={tteT,t <1}
Once intervals have been defined,
Tty 1)
denotes a time interval, where (¢ means]¢ or [t. In many cases, (7, +) is an Abelian group with zero 0 and inverse —. In

case + is order preserving
n<th=nHn+t<th-+t.

Common time bases (with appropriate < and +) are

e T ={NOW}. Models such as algebraic models are instantaneous. The time base is a singleton.

e T =R Models with this time base are called continuous-time models. Note how discrete event models have R as
a time base. However, only at a finite number of time-instants in a bounded time-interval, an event different from
the non-event ¢ occurs.

e T =N (or isomorphic). Models with this time base are called discrete-time models. Some formalisms such as Finite
State Automata (FSA) do not have an explicit notion of time (unlike their extension, timed automata). Hence, they
are often called untimed models. There is however a notion of progression (from one state to another). According
to our general definition, the index of progression, a natural number, is time.

In hybrid system models which combine aspects of continuous and discrete models [MB02], a system evolves continu-
ously over time (R) until a certain condition is met. Then, instantaneously (the continuous time does not progress), the
system may go through a number of discrete states (the index of progression is discrete) before continuing its continuous
behaviour. To uniquely describe progression (of generalized time) in this case, a tuple (7.,7;) depicted in Figure 2 is

1.1 Behaviour 3

TD 4

(tc, td)

Figure 2: Time base for hybrid system models

needed. Even when a series of discrete transitions keeps returning to the same state, the discrete index ¢, allows one to
distinguish between them. The time base used is

T ={(tc,t0)|tc € Rtz € {1,...,N(t.)}}.

Here, N(z.) (> 1) describes the number of discrete transitions the system goes through at continuous time ¢.. Obviously,
only a partial ordering will be defined over T which consists of first testing the relationship between the ¢, components,
and subsequently (if equal), that between the 7; components.

In case of Partial Differential Equations (PDEs), the time base remains R. The other independent variables (often space
in the form of some coordinate system) should be seen as infinitely many state-variable labels or generalized coordinates.

1.1 Behaviour

Given a time base, we wish to formalize behaviour over time. This is done by means of a time function, called trajectory
or signal
f:T—A

describing, at each time ¢, the value of the signal. A denotes the set of valid values f can take over 7. The time base may
be restricted to a subset of T: 7' C T'. The restriction of f to T’ is

fIT T = A,
VeeT : fIT'(t) = f(1).

The past of f is defined as f|7}y. The future of f is defined as f|T};.

The restriction of f to an interval is called a segment ®
o (t,h) — A.
The set of all allowed segments is called Q. It is a subset of all possible segments (A, T'). The length of a segment:
1:Q— T,
O =ty —t;,dom(®) = (tp,1,)

Segments are contiguous if their domains (¢1,,) and (f3,14) are contiguous: #, = t3.

2 Levels of system specification 4

continuous
T
piecewise continuo;s\
T
—e
o—=
o—e
o—0e
piecewise constant So—
T
discrete event T [
T

Figure 3: Segment types

Contiguous segments may be concatenated — ; ® 0;:
(O]} 00)2(1‘) = ml(t),Vt S dOm(O)l);

® O(J)z(t) = wz(t),Vt S dom(O)z),

where (and) must denote matching open/closed interval boundaries to ensure the concatenated segment is still a function
(i.e., has a unique value in each point of its domain).

A desirable property of a set of segments €2 is that it is closed under concatenation e: concatenating any left and right
segment of a segment yields the same segment:

Vi € dom(®) : 0y e = O.

Figure 3 shows some common segment types: continuous, piecewise continuous, piecewise constant and discrete event.
Note how for discrete event systems, inputs and output segments are event segments

®: <l‘1,l‘2> —)AU{¢},

with ¢ the non-event. For such systems, the internal state behaviour is piecewise constant (the internal state only changes
at event times).

2 Levels of system specification

With a time base and segments defined, we can build a hierarchy of system specification structures which incorporate
progressively more knowledge about the system. All these structures will view the system as a box interacting with its
environment through a well defined interface. The levels presented here elaborate on the hierarchy first proposed by Klir
[K1i85] and later modified by Zeigler [ZPK00].

2.1 Observation Frame 5

2.1 Observation Frame

At the lowest level, the only knowledge we have of the behaviour of a system is how we wish to observe it: which
time base to use and which quantities to observe at instants from the time base. This is represented in the form of an
Observation Frame O:

0= (TX,Y).

T with appropriate operators forms a time base. X is the input value set. It is a model for the input (influencing the
behaviour of the system) variables we consider. Y is the output value set. It is a model for the system response variables.

2.2 1/0 Relation Observation

Once the interface variables to observe as well as their value ranges have been determined, all possible relationships
between input and output segments can be recorded

IORO = (T,X,Q.Y,R).

Here, (T,X,Y) is an Observation Frame, and Q is the set of all possible input segments for this system. Note how Q
allows one to specify how the system’s environment may influence the system. As such, Q formalizes the Experimental
Frame’s generator presented before. € is a subset of all mathematically possible segments with 7' as domain and X as
image. R is the I/O relation

RCQx(Y,T),

where Q C (X,T), all possible segments with 7" as domain and X as image. (Y, 7) stands for all possible segments with
T as domain and Y as image. Input segments ® and output segments p are defined as

0: <ti,lf> - X;
p:(tity) =Y.

Though not necessary, it is common to observe input and output segments over the same time domain. The relation R
relates input and output segments
(0,p) € R = dom(®w) = dom(p).

As will be discussed further on, general non-causal relationships between interface variables, not specifying a priori
which are input and which are output may be specified by R. Higher levels in the specification hierarchy are explicitly
causal.

2.2.1 From I/O Relation Observation to Observation Frame

It is possible to go from an I/O Relation Observation model specification to an Observation Frame level model by merely
discarding the Q and R information at the I/O Relation Observation level.

2.3 1/0 Function Observation

At the I/O Relation Observation level, an input segment is not necessarily associated with a unique output segment p.
This is due to a limited knowledge of the internal working of the system. At the I/O Function Observation level, we want
to associate a unique output segment with every input segment. Therefore, more information needs to be specified about
the system. This is done in the form of a set F of I/O functions f. This leads to the I/O Function Observation structure

IOFO0 =(T,X,Q,Y,F),
where (T,X,Y) is I/O Relation Observation, Q is the set of all possible input segments, F is the set of I/O functions:
feEF=fCcQx(Y,T);
dom(f(®)) = dom().

f is conceptually equivalent to the system’s initial state: For each f, an input segment will be transformed into a unique
output segment.

2.4 1/0 System 6

2.3.1 From I/O Function Observation to I/O Relation Observation

It is possible to go from an I/O Function Observation to an I/O Relation Observation by constructing R from F:

R=J .

feF

2.4 1/0 System

In some cases, we have some insight into the infernal working of the system. This insight usually consists of a number of
descriptive variables and how their values evolve over time. Under certain conditions, these variables are state variables.
One usually tries to keep the set of state variables as small as possible.

In general systems theory [Wym67], a causal (output is the consequence of given inputs), deterministic (a known input
will lead to a unique output) system model SY S is defined. It is a template for a plethora of different formalism such as
Ordinary Differential Equations, Finite State Automata, Difference Equations, Petri Nets, efc. Its general form is

SYS=(T,X,Q,0,8,Y,\)

time base

input set

={0:T—>X} input segment set
state set

Qx0—0 transition function
output set

A:Q—=Y(orOxX—Y) output function

~ o 0 e N

V(Dv ('OI € Q,S(O). ('Olaqi) = 6(('0[76(('07 QL))

The time base T is the formalisation of the independent variable time. The input set X describes all possible allowed
input values (possibly a product set). An input segment ® represents input during a time-interval. The history of system
behaviour is condensed into a state (from a state set Q). The dynamics is described in a transition function & which takes
a current state, and applies an input segment ® € € to it to obtain a new state. The system may generate output. This
output is obtained as a function A of the state (and more generally, of the current input too). State and transition function
must obey the composition or semigroup property as shown in Figure 4. This property, whereby a transition over a time
interval [t;,¢¢] can always be split into a composition of transitions over arbitrary sub-intervals, is the basis of all model
simulators. Obviously, this also requires Q to be closed under concatenation as well as left segmentation. Closure under
concatenation requires that the concatenation of any two contiguous segments in € is again in Q. Left segmentation
requires that any left segment of a segment in Q is an element of Q in its own right.

As the output function is described separately, efficient simulators will only invoke this function (which may be large
and compute-intensive) when the user needs to observe output. Note how the output intervals (times between outputs)
are not part of the model, but rather of the simulation experiment. Figure 5 shows how output need not be produced at
each transition time. Even though a model written by a user may not distinguish between 8 and A, a simple dependency
analysis will identify which variables and expressions are not needed to compute . Such variables are output variables
€ Y and the expressions belong in A.

As SY S is a template for a host of causal, deterministic formalisms, it is possible to describe both models of the vessel ex-
ample presented earlier. In the Ordinary Differential Equation (ODE) case, the time base is continuous (R). The transition
function is written in integral form. Different numerical approximations of the integral can be used in the implementation
of an abstract simulator.

2.4 1/0O System

0

Figure 4: SYS state transition property

ol (’ N
v i | \.l
\ — _— —_—
Q 8 d 5
Y | o
X
v

Figure 5: Simulation kernel operation

2.4 1/0 System 8

Inputs (discontinuous — hybrid model):

e Emptying, filling flow rate ¢
e Rate of adding/removing heat W

Parameters: . ar _ 1 [W T]
. dt — IlcpA ¢
e Cross-section surface of vessel A dl o
e Specific heat of liquid ¢ ooodr T
e Density of liquid p) is_low = (l < llow)
State variables: l.S_hlgh = (l > lhigh)
e Temperature T ls_—COZd = (T <Teoua)
o Level of liquid / \ is_hot = (T > Thot)

Outputs (sensors):

e is_low,is_high,is_cold,is_hot

The model can be represented in the I/O System specification form

SYS\(/)JLE)SESEL = (T’nga Q787Y7 7\'>

T=R
X=RxR={(W,$)}
0:T—>X
0={(T,)|TeR,leR"}
5:Qx0—0

S(0y, 1, (T(11), (1)) =

10+ [g~ o(eT(@lae 66)+ [o(a)aon

Y =BxBxBxB ={(is_low,is_high,is_cold,is_hot)}
A:QO—Y
X(Tvl) = ((l < llow)7 (l > lhigh)a (T < Tcold), (T > Thot))-

At a higher level of abstraction, we have represented time as a discrete integer index. The transition function lists all
possible state transitions.

SYSeéSS%IfEL = (T,X,Q, Q787Y7 7\'>

T=N

X = {heat,cool,of f} x {fill,empty, closed’}

0:T—X

0 = {(T,D|T € {cold, Tperween, hot },1 € {empty, lpeseen, full}}
5:Qx0—0

d(wm,n+1[(off, fill),(cold,empty)) = (cold,lperween)
d(on,n+1[(of f, fill), (cold, lperween)) = (cold, full))
d(own,n+1[(off, fill), (cold, full))) = (cold, full))

d(wn,n+ 1[(heat, fill), (hot, full))) = (hot, full))
Y=BxBxBxB

A:Q—Y

AMT,1) = ((I = low), (I = high),(T = cold), (T = hot))

2.4 1/0 System 9

The Finite State Automaton formalism [CL89]
FSA = (%,S,s0,d,F),
where

Y is the input alphabet (a finite and nonempty set of symbols),
S is the finite nonempty set of states,

so 1s the initial (or start) state, sg € S,

d: S xX — Sis the state transition function,

F C S is the set of final or accepting states,

fits the general SY S structure presented above.

The formalism is specified by elaboration of the elements of the SY S 7-tuple:
SYS=(T,X,Q,0,8,Y,A).

In the SY S specification, the initial state is not explicitly represented. Also, accepting states are not defined. Hence, SY'S
describes a parametrized class of Finite State Automata.

The time base
T = N (or isomorphic with N).

This can be interpreted as (implicit) discrete time-clicks. It is possible to extend the FSA formalism to assign with each
state and/or with each transition, a known duration.

The input set
X=X

The set Q of all input segments ®. An input segment encodes a sequence of inputs from X.
The finite state set

0=A
enumerates all states in the automaton.

The state transition function transforms a current state, through input and time-advance, to a new state
5:QxQ0— 0.

It is obtained by iteratively applying all FSA state transitions f in an input segment ®.

The output function A takes the form
A:Q—Y

in case of a Moore machine (the input can only influence the output via the state), or
A:QxQ—>Y
in case of a Mealy machine (the input can directly influence the output).

2.4.1 From I/O System specification to I/O Function Observation

It is possible to go from an I/O System specification to an I/O Function Observation. For a given initial condition ¢ and a
given input segment ®, we can define a state trajectory STRAJ ¢ from SY S

STRAJ, : dom(®) — Q,

with
STRAJ,(t) = 8(yy, YVt € dom(w).

2.4

/0 System 10

Figure 6: Non-deterministic model with transition probabilities

From this state trajectory, an output trajectory OT RAJ, ¢, may be constructed

with

OTRAJ, : dom(®) =Y,

OTRAJ,;0(t) = MSTRAJ (1), 0(t)),Vt € dom().

Thus, for every ¢ (initial state), it is possible to construct

T,:Q— (Y,T),

where

7,(®) = OTRAJ; », VO € Q.

The I/0 Function Observation associated with SY S is then

I0F0 =(T,X,Q,Y,{T(0)|q € 0}).

Subsequently, we may derive the I/O Relation Observation by constructing the relation R as the union of all I/O functions:

R={(0,p)|o € Q,p=O0TRAJ,w,q € O}.

In SYS, 8 is deterministic: applying the same input segment to the same state will always lead to the same, unique new
state (and output). Often, deterministic simulation kernels are used to simulate non-deterministic models. Two main
approaches are possible:

1. A deterministic model is decorated with transition probabilities as shown in Figure 6. The same model is then sim-

ulated a number of times, with the same initial conditions and parameters. Whenever a non-deterministic transition
is encountered however, a unique, deterministic, transition is chosen by sampling from a stochastic distribution,
taking into account the transition probabilities in the model. Thus, from the point of view of the simulation en-
gine, it is simulating a deterministic model. To be able to make meaningful statements about the behaviour of the
non-deterministic model, a sufficient number of samples must be simulated to obtain statistically relevant estimates
of performance metrics (such as average queue lengths in a queueing model). In discrete event simulation in par-
ticular, this approach is common and its statistical aspects have been studied in great detail [LK91]. In a slightly
modified form, this approach is called Monte Carlo simulation.

. One may wish not to specify any probability distribution but leave the uncertainty of making a transition to more

than one new state in the transition function. In case of State Automata, this turns the transition graph into a transi-
tion hypergraph [Har88]. Such a specification can always be transformed into a deterministic one by constructing
a new state set O,y = 22, the set of all subsets (powerset) of Q [Cas93]. A new transition function is constructed
describing the —now deterministic— transition to a new state, denoting the set of states from Q to which a non-
deterministic transition existed in the old model. It is noted that in quantum physics, evolution over time of a wave
function (a distribution interpreted as being probabilistic) is also deterministic.

3 Structured specifications 11

Zeigler [ZPKOO] presents a refinement of SY.S in which behaviour is specified as an iterative application of generator
segments. Arbitrary input segments are generated from elementary segments.

It should be noted that though models may be iteratively simulated, this is not necessary per se. If a symbolic (analytical)
solution can be found, this is often preferable. Analytical solutions usually describe a (parametrised) class of solutions
rather than a single one. Also, accumulation of numerical errors is often avoided. As an example, the following model
described in the Difference Equation formalisms (7 = N,Q = R)

X1 = 1
Xit1 = axi+1,i>1
can be re-written as
X, = l4+a+a®+...+a"!
ax, = a+a+...+a"""+d",

subtracting the second from the first equation leads to the instantaneous (no iteration required) solution

| i
Xp =

l—a’

3 Structured specifications

Upto now, no structure was explicitly specified for the sets X, Y, efc. at any of the above specification levels. Orthogonal
to the specification hierarchy, at each of the levels, the internal structure of input, output, and state sets as well as of
functions may be made explicit. This allows one to construct sets from more primitive sets.

One way of introducing structure is through multivariable sets. A multivariable set (one possible representation of a pro-
gramming language Symbol Table) uses a finite sequence V of n distinct variable names, identifiers, labels, or references

V= (Vl,V2,...,Vn).
With each of these names will be associated a value set of values a variable with that name may take
Vi,Vo,... V.

The full multivariable set is then
S=(V,Vi xVa x...V,)s.

A projection operator . can be defined

n
SxXV — U Vj,S.Vi =5;,Vv; € V.
j=1

With A and B structured sets, a structured function may be defined
f:A—B,
where the projection of f on a name in the image set is
f-bi:A— ((b;),Bi)s,
f-bi(a) = f(a).bi
In case of interfaces or ports, the names denote individual port names. For example, in the water pot example
X = ((heatFlow,liquidFlow),R x R);.

With x € X, we may refer to the x.heat F'low input port value of the model.

4 Multicomponent specifications 12

1909 B8
o RSy S—

Departure
Physical View
- o
Departure
Arrival Cashier
. . . Queue . . .
[IAT distribution] [ST distribution]
Abstract View

Figure 7: Simple single queue, single server system

In case of state variables, the names denote variable names. Again, in the water pot example
S = ((temperature,level),]0.0,100.0[x [0, H]);.

With s € S, we may refer to the S.temperature state variable value. As such, structured sets and functions are similar to
variables and their types in programming languages.

Figure 7 depicts a simple single server, single queue system. In a discrete event model of this system, the state set could
be a structured set containing a simple abstraction of the queue (the queue length) and the status of the server

SQ = ((qLength,cashStatus),N x {Idle, Busy}).

With s € SQ, we may refer to s.qLength.
Structured sets may be used to add structure to I/O Observation Frame, I/O Relation Observation, I/O Function Observa-
tion, as well as to I/O system formalisms.

A modelling language (such Modelica uses structured sets to allow the modeller to describe ports and variables by name
(rather than by an index in a product set).

4 Multicomponent specifications

A common means to tackle complexity is to decompose a problem fop-down into smaller sub-problems. Conversely,
complex solutions may be built bottom-up by combining primitive sub-problem solution building blocks. Both approaches
are instances of compositional modelling: the connection (but more general, composition) of interacting component
models to build new models. In case the components only interact via their interfaces, and do not influence each other’s
internal working in any other way (model information is completely encapsulated in object-oriented terminology [Boo98,
Zei97, Weg90]), the compositional modelling approach is called modular. If inter-components access is not restricted to
take place via interfaces or ports only, the approach is called non-modular.

4.1 Modular multicomponent specification

A modular multicomponent specification or coupled model or network model as depicted in Figure 8 can be mathemati-
cally described as a structure

N= <T,X561f,Yse[f,D, {Md|d € D}, {Id‘d eDU {self}}, {Zd‘d eDU {Sdf}}).

In this structure,

4.1 Modular multicomponent specification 13

CouplingGraph

Msub_1 Msub_2

Msub_3

CoupledModel

Figure 8: Example network model

® Xsr and Yy, are inputs and outputs of the network N. self (this in C++ terminology) allows us to treat the
network object itself as any other object. In a modular specification, the network will interact with its environment
thI'Ollgh Xisel f and Yy f Only .

e Dis a set of component references or names.

e The M;’s are component models (Vd € D).

o I; CDU{self} is the set of influencers of d. Alternately, the influencees of a component could be specified. Both
allow one to specify the coupling graph topology.

o Z;: Xier,YX; — XYy is the interface map for d € DU {self}

YX;=X; if i=self, YX;=Y; if i #self
XYy=Yy if d:self, XY; =Xy if d;éself

The interface map allows one to specify mappings or conversions required when for example an output event “de-
parture” of one sub-model is routed to the input of another sub-model. The accepting sub-model may be expecting
“arrival” events only. Thus, a “departure”—to—"“arrival” mapping must be carried out to allow true sub-model re-use.
Sub-models should not have to be modified when re-used in a network ! Together, /; and Z; specify the network
coupling completely.

The above structure does not reveal anything about the overall behaviour of the network. It only specifies structure. As
such, only questions about that structure (number of components, presence of feedback, ...) can be answered at this
level. The behavioural semantics of a coupled model is often given by specifying a composition procedure, also known as
flattening. If all the component models are specified using the same formalism, the composition procedure may replace
the network by a single model in that same formalism. In that case, the formalism is said to be closed under composition.
This is obviously a highly desirable property. It is the basis for

e implementing a simulation kernel which implements the simulation of coupled models by orchestrating simulators
of the components,
o finding the meaning of hierarchies of models by applying the composition procedure recursively.

Compositional modelling may be done (as long as a composition procedure is given) at any of the specification levels
mentioned before (I/O observation frame, I/O Relation Observation, I/O Function Observation, I/O System). The se-
mantics is given by the elaboration of closure under coupling. Within the I/O System level, there are obviously many
formalisms for which a composition procedure may be defined.

4.1 Modular multicomponent specification 14

non-causal
A B
y X
causal
A B
y X

non-causal: A.y = B.x
causal: Bx:=A.y

Figure 9: Composition for DAE models

Al
| DEP
y B
ARR
X
A2
y|] DEP

Schedule events in causal order

Figure 10: Composition for Discrete Event models

Assuming the component models M in
<T7XselfaYselfaDa {Md|d € D}a{ld‘d €DU {Sélf}}, {Zdld €DU {Sélf}}>
are all specified at the I/O System level, implementing closure would mean this model is replaced by

<T7 Xselfa Q? Qa 67 Yselfa 7\'>

In continuous models, composition is achieved by replacing connections by algebraic equalities and combining these
with the components’ mathematical equations into one large set of equations (see Figure 9). In discrete event models,
composition is achieved by describing how different component events are globally scheduled in a causality-preserving
order (see Figure 10). Both cases will be described in more detail later.

If structured sets are used to describe input and output sets of the network as well as of the components, connections may
be described between specific (named) ports making the mathematical structure more intuitive and closer to the form
commonly used in modelling languages.

4.2 Non-modular multicomponent specification 15

el

(" H e2
e R(v2)] H

Figure 11: Composition of Statechart components

4.2 Non-modular multicomponent specification

Often, models in some formalism are graphically specified by connecting building blocks. Though this gives the illusion
of being modular, often the transition functions of the building blocks interact directly, without going through interfaces.
This limits

o the insight into the semantics a user gets directly from the graphical representation,

e the potential for component-based re-use as a component depends on its environment in unexpected ways,

o the potential for distributed implementation as hidden component interactions need to be passed as messages be-
tween distributed processors.

In programming languages, non-modularity corresponds to the use of global variables, and to the ensuing side-effect
functions may have. Object oriented design discourages this in encapsulating information inside objects (instances of
classes) and only giving access through well-defined interface methods.

The process interaction discrete event language GPSS [Sch74] is a notable, but popular, example of non-modular model
specification. In his 1992 thesis, Claeys [Cla92] has added encapsulation and hierarchy to GPSS, making it more modular.
A similar approach, modifying the process interaction world view, was advocated by Cota and Sargent [CS92].

Statecharts [Har88, HN96, HG97] are modular in their treatment of external events, but non-modular in their treatment
of concurrent (orthogonal) behaviour. In Figure 11, modular coupling of the model to its environment is possible via the
input-ports e; and e,. The concurrent state automata (concurrency is denoted by the dotted vertical line) however interact
in a non-modular fashion: a transition in the left automaton from s, to s; will occur if the automaton on the right is in
state v;.

The mathematical representation of a nonmodular multicomponent system is
MC = (T,X,Q,Y,D,{M,|d € D})

where
My =(Qu,Eq,14,84,\a),Vd € D.

In the above,

e Dis a set of component references or names,
Qg is the state set of component d,
1; C D is the set of influencers of d,
E; C D is the set of influencees of d,
4 is the state transition function of d
Oy 1 Xier, Qi X Q = X jeg, Q).
The new states in all of the influencees are determined by the old states in all of the influencers.
e), is the output function of d
A XieQiXx Q—Y
Output is determined by the state of all the influencers.

5 Non-causal modelling 16

%=

Figure 12: A causal block diagram model for the Mass-Spring problem

Together, the nonmodular multicomponent system is an I/O System level specification. Its state set is the product set of all
component state sets and its transition function is given by combining all individual component transition function. Note
how the components are themselves not I/O Systems and it is thus not possible to construct a hierarchy of nonmodular
multicomponent systems. Also, the particular structure of these systems implies they only make sense at the I/O Systems
level.

In Figure 12, we show the Mass-Spring model presented when discussing the modelling and simulation process, described
in the causal block diagram formalism. In the figure, I blocks denote Integrators. The other blocks denote algebraic
operations. Causal block diagram models can be given nonmodular multicomponent semantics with

Eq={d}

Y = X4epYa

Q= X4epQu

8(q, ®).d = 84(xie1,qi, ®)

Mg, 0(1)).d = Xa(Xier,qi, (1))

5 Non-causal modelling

Though quite generic, the formalisms presented above at the I/O systems level do only describe causal models. When
describing physical systems, non-causal models express conservation laws and constraints without imposing a computa-
tional causality. The dynamics of a simple resistor for example (Figure 13) is described by Ohm’s law

V—-Ri=0.

Depending on whether the current i through (when connected to a current source) or the voltage drop V over (when
connected to a voltage source) the resistor is known, the causal equations

V:=Ri

or

would be used. Mathematically, those two expressions are evidently equivalent, but if we are interested in writing a
computational block, with an input and an output, they are distinct. In the case of the resistor, which, as a physical object,
is non-causal in nature, a choice can not be made a priori as it depends on what the resistor will be connected to. As such,
it does not make sense to define two objects (as in Matlab/Simulink), one for each causal orientation. The whole problem

6 Classifications 17

4/\/\/\/\/7 V1-V2 =R

Object "resistor"

12

Vi v2 I = (V1-V2)R
R

R T

Vi V2? ya-vi-RY
R
|

Vi? Ve V1=V24+RY
R

Figure 13: Electrical resistor

stems from the fact that we are dealing with assignment instructions, which we have stressed by using the assignment
operator : =, and not mathematical equalities. One says that computational blocks are causally oriented. From the point of
expressiveness and re-usability (in different causal contexts), the non-causal, implicit representation is preferred. From a
computational point of view however, the causal representation is preferred as solving implicit equations, though possible,
is highly inefficient compared to solving their causal counterparts. Inefficiency is mainly due to the iterative nature of
implicit solvers. As will be demonstrated later, it is in many cases possible to automatically transform a non-causal
representation into a causal one once inputs and outputs have been specified.

Most formalisms and corresponding modelling languages are causally oriented, which strongly limits the re-usability of
sub-models, and in general, their fitness to serve as a basis for the construction of general sub-model languages. Causally
non-oriented formalisms and languages (non-causal, for short) exist as well, and some of them will be presented further
on.

6 Classifications

Previously, the importance of making the process of modelling and simulation explicit was stressed. By doing so, dif-
ferent sub-processes could be identified, thus simplifying the generic (application-independent) study of modelling and
simulation. Now, a further classification of different types of models, their corresponding simulation kernels, and support-
ing methods and tools is presented. The main focus is on classifying models. All other issues are in a sense derived from
that. The essence of classification is to group in equivalence classes according to a number of criteria. A classification
may help in choosing the most appropriate formalism when modelling a system. This in turn may help one choose the
most appropriate modelling and simulation tool.

One possible classification makes a destinction between graphical and textual model representations. This is really a tool
issue, but the underlying formalism may be more or less amenable to graphical represenation.

A major classification is the distinction between deterministic and stochastic models. As mentioned before, even stochas-
tic models may be solved by a deterministic simulator.

7 Application-based classification 18

pollution

physiological hydrological

Ecological fluid and heat
1
1
Exp‘erimental
analysis

Economical N
testing of \ L’
theotigs R < ’,

N -

ial .
Socia mechanical

and
electrical

gaining
insight

influencing \ .
public opinion ,' S ! 4 \ design

Figure 14: Karplus’ classification

7 Application-based classification

The Directory of Simulation Software published yearly by the Society for Computer Simulation is a list of companies
and product descriptions. Hundreds are listed, with only a rough, 2-level classification:

e application based: telecom, robotics, resource management, training, process control, power applications, operat-
ing systems, networks, manufacturing, industrial engineering, finance, education, chemical, business, biomedical,
automotive, batch processes, and aerospace.

e generic: operations research, program generators, graphics, animation, fluid dynamics, discrete event, differential
eqation solvers, continuous languages, CAD/CAM, CAE/CASE, and AI/Expert Systems.

This classification does not give much insight in the generic nature of modelling and simulation. However, already,
needs and trends can be identified. Most of the software tools are self-contained and closed. To allow exchange and
re-use of models as well as inter-operability of simulators, tools must become open and model representation languages
standardized.

8 lll-definedness classification

At a far more abstract level, Karplus’ Arch shown in Figure 14 depicts a spectrum of systems ordered according to the
amount of a priori information we have about them. On the very right, white box systems are characterized by complete
insight in their working. Based on general governing laws, a model can deductively be derived from a priori knowledge.
This usually means we build models at the I/O System level. On the very left, black box systems are characterized by a
complete lack of knowledge about their internal working. Only input-output relationships can be observed. Initially, we
can only build models at the I/O Observation Frame level. Using inductive techniques, it may be possible to climb up
the specification hierarchy, inferring structure from behaviour, to reach higher levels. Often, this is an iterative process
whereby a structure is proposed, and after parameter estimation, simulation results are compared to observation data. This
comparison (in particular, discrepancies) may yield new insights, which lead to new hypotheses, efc. In between is a grey
area, often called ill-defined systems. The study of these systems is most challenging as both observation data and limited
a priori knowledge are available. As can be seen in the figure, application areas range from electrical and mechanical
systems for white box systems, over biological and physiological models for grey systems, to social and psychological
systems for black box systems.

9 System specification classification

In Figure 3, we have shown some common types of segments (trajectories). These may be used to characterize model
formalisms.

10 I/O System classification 19

specification
level

5 \
1
1
1
1

Figure 15: Levels of system specification

T: Continuous T: Discrete T: {NOW}
Q: Continuous DAE Difference Equations Algebraic Equations
Q: Discrete Discrete event Finite State Automata Integer Equations
Naive Physics Petri Nets

Table 1: I/O system model classification

In Figure 15, we bring together different classifications presented before. The specification level is one dimension of
classification. At each level, structured sets may be introduced, to make the specification structured. At each level, and
both for structured and for non-structured formalisms, either atomic or coupled models may be constructed. Whereas
modular coupled models can be constructed at each level of the specification hierarchy, non-modular coupled models
only make sense at the I/O Sytem level.

10 1I/O System classification

Many formalisms are situated at the I/O System specification level. For these formalisms, the nature (type) of time base
T and state set Q allow for classification. Table 1 shows a few formalisms classified according to the nature of their time
base and state set.

11 Discrete event world views

Formalisms belong to the discrete event category in case the time base is continuous, but only a finite number of events
occur in a bounded time-interval, and only at those event times does the discrete state of the system change. Discrete
event models are used when

o the behaviour of physical systems is abstracted by means of time-scale or parameter abstraction [MB02]. In many

12 Tool-oriented classification 20

Figure 16: Car suspension, physical view

cases, this leads to queueing models.
e non-physical systems such as software are studied.

Traditionally, several world views have been distinguised:

1. Event Scheduling
2. Activity Scanning
3. Three Phase Approach

4. Process Interaction

12 Tool-oriented classification

In the following, a classification is presented which takes into account the relationship between modelling formalisms and
representation languages on the one hand and their applicability on the other hand. Here, a modelling and simulation tool
user’s point of view is taken. This is done by means of a simple example, demonstrating different model representations
and their respective merits and drawbacks. In its original form, this is due to Francis Lorenz, during Simulation in Europe
discussions [VV96, KVVGY9%4, KVVG95].

The fundamental principle of simulation code generators is to start from a description of a model that is to be simu-
lated and to produce the corresponding simulation program in a —to the user— automatic way. The comparative study
of modelling formalisms and corresponding representation languages is therefore of great importance as the language
implemented in a particular code generator, with its advantages and flaws, will determine the features of the generator.

The models considered here assume a hypothesis of parameter aggregation (lumped parameter assumption). In mathe-
matical terms, they are represented by differential algebraic equations with a single independent variable, time.

12.1 Physical view

The problem we will discuss is a car suspension (Figure 16), studied here in one dimension. This implies a model of a
quarter of the vehicle, because we only study one of the wheels, supporting one quarter of the weight. We assume all
elements are linear as it is not possible to represent non-linearities in some of the formalisms we will discuss. Also, we
will not represent the lifting of the tire from the road which would introduce a structural discontinuity which could only
be represented in a hybrid formalism.

12.2 Physical domain specific views 21

Figure 17: Car suspension, mechanical view

12.2 Physical domain specific views

This example is chosen in the domain of mechanics. A mechanical concept schema can be drawn as shown in Figure 17.
One could also consider an electrical equivalent of this system as shown in Figure 18.

The analogy chosen is force = current (“through” variables), velocity = voltage (‘“‘across” variables). In this case, masses
become capacitors and springs, self-inductances. The analogy force = voltage, velocity = current could also be used (as
shown in the following table). Masses are then self-inductances and springs, capacitors; one also has to invert serial and
parallel connections. We will come back to this analogy duality.

The analogy between diffent physical domains is summarized in Table 2.

Note that the concept schema is a language for system description. It is not without ambiguities (for example, the same
zig-zag symbol is used to represent a spring in the context of mechanics and a resistor in the context of electricity) but
it is by far the most intuitive. One can express virtually anything in this language, although some uncertainty remains
in the exact interpretation of the graph. This language is therefore not totally rigourous and complete. In this respect,
where does the schema say that all elements are linear ? The computational causality need not be specified, but there is
still much work left to do before simulation code can be generated. In particular, transforming a concept schema into a
mathematical formulation is not straightforward.

12.3 Equations

The most “natural” (or at least the one that is designated as such, for simulation purposes) method to present our suspen-
sion system is simply by writing down the mathematical equations.

f F1 = k.[[— (X1 —X())]
F2 = K.[L— (XQ —xl)]
F3 = —D.(V2 — vl)

1= —-FB-F)/m
| X = (F2+F3)/M

One sees the system is of the fourth order (two second order equations). Note that the position (x¢) is unknown. Also note
that it has not been explicitly stated that v and v, are the first derivatives of x; and x,. Though this relationship may seem

12.3 Equations

22

K%TFZ

vOl

surface

W e

7777

7777

Figure 18: Electrical analogy of car suspension

Physical domain Effort Flow Momentum Displacement
e / p q
Electrical Voltage Current Flux Charge
u [V] i [A] D [V s] q[As]
Translational Force Velocity Momentum Displacement
F [N] v[ms '] I[Ns] x [m]
Rotational Torque Angular Velocity Angular Momentum Angle
T [Nm] o [rad s7!] L[N ms] ¢ [rad]
Hydraulic Pressure Volume Flow Pressure Momentum Volume
pINm™2] g[m’s™'] I'[Nm™?s] V [m?®]
Thermodynamical Temperature Entropy Flow — Entropy
T [K] S IwK 1 SIK]

Table 2: Physical analogy

12.4 State equation 23

obvious to a human, a code generator will only be able to infer this relation with difficulty. To the generator, v and v,
will be “not computed” (reflected by issuing an error message) or will be considered as unknowns.

Even an example as simple as this can be represented in various ways depending on the analyst and his “style”.

Below, another representation of the problem is presented, which uses other variables. Note that now the velocity (vg)
is unknown. The system is of course still of fourth order, but each of the four variables chosen is only integrated once
(the accelerations of the two masses and the velocities of compressing the two springs), contrary to the integration of two
times two variables (the accelerations of the two masses). This formulation is more directly usable for simulation.

Obviously, this formulation does not improve readability (and hence, re-usability) of large models.

;

Fi=kAl
F,=K.AL
F3 :D.AV12
Fn=F—F,—F;
Fy=F+F
< V= Fm/m
vy = Fy /M
Avgr =vp — vy
AV12 =V — WV
AiZAvOl
AL:Avlz

\

Using equations, one can express a plethora of laws of behaviour, but discontinuities are not easily representable in
this “language”. The language is causally free (non-causal), but the re-use of sub-models requires an almost complete
re-examination of each new situation.

At the mathematical level, it is possible to write equations which are not physically meaningful (e.g., do not conserve
energy, or lead to negative concentrations).

12.4 State equation

The second set of equations leads us to state equations (state-space form). The four variables to integrate are called state
variables and are organised into a vector (in fact, a column matrix). The equations are then written in matrix form.

X=AX+BU
—D D k —K
B onon R .)
A=1500 o 0 | XA | B | U=
1 -1 0 0 AL 0

This time, the language is causally oriented. We again find the previous characteristics, however amplified by a stricter
environment. However, the state equation is relatively easy to solve (by matrix multiplication), except in non-linear cases
(the matrices depend on the state vector). Furthermore, it is possible to analyse the eigenvalues of the matrix A, which
yields valuable information about the system’s dynamics.

As at the mathematical level, it is possible to write state-space equations which are not physically meaningful.

12.5 Algorithm

We can express the model in the form of a directly usable algorithm. The algorithm below is the transcription in FOR-
TRAN of the above equations.

O el R A s e Ly EE et et
C

12.6 Transfer function 24

SUBROUTINE SUSPEN (VO,

+ V1, V2, DLO1, DL12,
V1D, V2D, DLO1D, DL12D,
+ K01, K12, D12, M1, M2)
C
C INPUT VARIABLE, STATE VARIABLES
REAL*8 V0,
+ V1, V2, DLO1, DL12
C

C OUTPUT VARIABLES
REAL*8 V1D, V2D, DLO1D, DL1Z2D

C PARAMETERS
REAL*8 K01, K12, D12, M1, M2

C INTERNAL VARIABLES
REAL*8 DV0O1l, DV12, Fl, F2, F3

C
C ,,,
C
DvV0l = V0 - V1
DV12 = V1 - V2
C

C SPRINGS, SHOCK DAMPING
F1 = K01 * DLO1
F2 = K12 * DL12
F3 = D12 * DV12

C
C MASSES
VD = (F1 - F2 - F3) / Ml
V2D = (F2 + F3) / M2
C
DLO1D = DVO1
DL12D = DV12
C
RETURN
END
C
C ,,,

It is clear that one may describe behaviour laws in algorithmic form, but, as with mathematical and state-space models, no
fool-proof mechanism is present to guard one from writing physically meaningless models. It is therefore a dangerous ex-
pression form. Moreover, it is causally oriented. The current practice of presenting a library of FORTRAN sub-programs
as a library of sub-models is therefore to be avoided. Also, this representation does not allow for symbolic analysis of the
model.

12.6 Transfer function

Another fashionable way of expression is the transfer function, obtained by the Laplace transform of the equations. They
are written here for an unknown velocity; one could have written them for an unknown position as well.

Vi k(Ms*+ Ds+ K)

vo mMs*+D(M+m)s3 + (mK + MK + Mk)s® + kDs + kK

V2 k(Ds+K)
vo mMs*+D(M+m)s3 + (mK + MK + Mk)s® + kDs + kK

12.7 Block diagram 25

vo K | F1) 1 vl + Kl Fm 1 v2
— Y —— — » X D=] —
S * sm S sM

Vi Yv2
Figure 19: (Transfer Function) block diagram

-1

v0 K/s 1/sm vi D+K/s 1/sM v2

Figure 20: Signal flow graph

This way of representation is only usable in linear cases, which strongly limits its applicability. The readability of the
formulas is poor and they are causally oriented (the transfer function pushes the input-output view of the system to its
extreme). They are re-usable in a certain range, but most of the time it is easier to re-study a deviating system than it is to
modify preceding work. Nevertheless, the utilities developed by control-specialists for this formalism are numerous and
extremely useful (e.g., the study of dynamics and stability on Bode, Nyquist or Black graphs, the location of Evans poles,
etc.), which largely justifies its use in the context of process control problems.

12.7 Block diagram

The causal block diagrams were initially nothing but the graphical representation of the transfer functions (Figure 19).

As a graphical representation of the transfer functions, block diagrams strongly improve readability, but leave the other
characteristics unchanged. Nevertheless, when used in the temporal domain, they become a graphical representation of
equations, with all advantages involved. Unfortunately, they also impose a computational causality (as in Matlab/Simulink)
on the equations, decreasing their re-usability.

If block diagrams are given a non-causal semantics, this disadvantage vanishes. Non-causal block diagrams are called
generalised block diagrams by Cellier [Cel91].

12.8 Signal flow graph

The signal flow graph is another graphical representation of the transfer functions (Figure 20). It is therefore very similar
to the block diagram.

The signal flow graph is only used in the Laplace plane, and is therefore limited to linear systems. Its characteristics are
more or less those of transfer functions. It however adds to the arsenal of analysis tools, like the Mason formula, based
on a study of the system topology.

12.9 Linear graph 26

v2
CM
IK RD
Cm
v ¥ Vref
Ik
v0

Figure 21: Linear graph

12.9 Linear graph

The linear graph is in a way an equivalent electrical schema of the system, relieved of all electrical connotations. It it
is sufficient to compare the linear graph model of our car suspension in Figure 21 to the equivalent electrical concept
schema shown above. This method is applicable in linear as well as in non-linear cases. Its principal advantage lies in the
fact that it allows for a causally free representation and it also proposes an automatic method for attributing computational
causalities called “normal tree search”, based on the topological analysis of the model to allow for automatic code
generation. In other words, it allows for the creation of real libraries of sub-models and also delivers the necessary
tools to use them.

Note that this topological analysis algorithm does not only determine causalities. It also allows the detection of certain
modelling errors and certain numerical difficulties (algebraic loops, dependent state variables). These possibilities are
present because the language is based on physical concepts (potentials, fluxes, inertial effects, capacitative, dissipative)
instead of mathematical concepts (variables, operators). In the model presented here, we have retained the analogy force
= flux (current) and velocity = potential (voltage). We could just as well have chosen the dual analogy.

12.10 Bond graphs

In the linear graph method, the “parallel” and “serial” links (note that these notions are not as trivial to apply in the
mechanical domain) are represented by combining the graph elements serially or in parallel. The bond graph formalism
[Cel91, Bro90, Bre84, LW95, SB95] is in principle very similar to the linear graph formalism. In particular, it is based
on the same physical concepts, but all aspects of the problem are represented here as graph nodes, including its topology:
the “0” nodes correspond to “paralle]” connections and the “1” nodes correspond to “serial” connections (Figure 22).

This method yields a real formalization of the circuit topology. The structure of the bond graph represents the physical
meta-structure of the system under study, different by nature from the technological structure of the assembly of system
constituents. Once the principles of the language have been assimilated, it allows one to understand and master the most
intricate physics phenomena (albeit under the lumped parameter assumption).

This time we have abandoned the analogy force = flux and velocity = potential, in favour of the analogy force = potential
and velocity = flux, more common in bond graphs (due to their origin in mechanical engineering). Masses are then
inertial elements and springs capacitative elements. This duality of analogy, already mentioned, should not trouble the
analyst. In particular, the dualisation of a bond graph is extremely easy: it suffices to replace all elements by their duals
(I < C,0 ¢ 1,---) but the meta-structure of the model stays unchanged!

12.10 Bond graphs

27

_\ R:D

C:/K

Sf:v0

Figure 22: Causal Bond Graph

12.11 Comparison 28

This method, like the linear method, is applicable in linear as well as in non-linear cases. The representation it allows for
is also causally free and it proposes an automatic method of attributing computational causalities (equivalent to the linear
method) as well, which also detects the same modelling errors and numerical difficulties.

12.11 Comparison

In Table 3, the formalisms (representation languages) presented are compared in a more structured way, on the basis of
the following criteria:

e Popularity: general knowledge of the method with engineers and scientific researchers.

e Readability: ease with which someone familiar with the method can understand models composed by someone
else.

e FExpressiveness: possibility to describe non-linear systems and to use complex functions (pure delay, tabulated
functions, . ..) or other special functions (dead zone, hysteresis, ...).

e Discontinuous models: possibility to describe functional and structural discontinuities.

o Structured variables: possibility to represent model variables (elements accessed by name) and matrices (elements
accessed by index) in structures.

e Modularity: possibility to hierarchically decompose models into sub-models.

o Re-usability: possibility to re-use previously composed models in the context of different problems.

e Adaptability: possibility to modify models previously constructed to create a variant of the model (without drasti-
cally changing the model).

e Numerical analysis: existence of means of analysis linked to the method and yielding information of numerical
nature on the model studied.

e Topological analysis: existence of means of analysis linked to the method and yielding information of topological
nature on the model studied.

12.12 Formalism/language levels

The comparison makes explicit that none of the languages is universally ideal. Each language has its advantages and its
flaws. Moreover, for those of the languages for which we have found many flaws and only a few advantages, it may very
well be that those advantages are of such importance (large weight factor) that they justify the use of the language in their
own right. This is for example the case with transfer functions, which have few advantages according to our criteria, but
which are best suited for the study of process control, due to the powerful analysis methods available.

It would thus be useless to search for the “best” language. This does not exist, or rather each language could reveal itself
as the best in the context of a specific problem for a specific class of users.

Instead of the segregational view of “better” and “worse” languages, we prefer a more qualified view in which one looks
for the optimal use that can be made of these ways of representation. This has led to the classification of the languages
using five levels, each level built on top of lower levels, but each level having its use with respect to the problem posed
(Table 4). I/0 data refers to trajectory data generated from simulations. The algorithmic levels refers to causal models. The
mathematical level refers to non-causal models. The physical level refers to non-causal models with physical properties
(such as energy conservation) built into the formalism. The technological level refers to representations incorporating
technological information which may not reveal any information about the physics of the system.

On the basis of this reflection, one can envision a multi-formalism modelling and simulation environment, in which the
user has a choice of formalisms (and corresponding languages) depending on the sub-model he wishes to construct and in
which he can freely assemble sub-models. This environment would be able to use one of the “solvers” currently available
as a numerical kernel.

The classification of Table 4 is presented in three dimensions in Figure 23. It shows the position of different lan-
guages/formalisms with respect to application domain, formalism class (paradigm), and description level.

12.12 Formalism/language levels

T
D % 0
i P
s I N 6
¢ u uo
o € m
n t ¢
E ¢t u AlT 8
R[5 15| R
poS|r boajwm f &aoa
o 3 € o v |o U t I 1
p 9 2 u a|d ZSI a | a a
u . S T u n n
1 bli m i b bla a
a 1 |Y o al|a 1 1]1 1
r 1|S d b|lr I 1]y vy
i ile € 1 i i i]s s
t t|s 1 e |t t t|i i
y yI|s s s|y y yl|s s
Concept schema ® &+ + + | & + |6 ©
Equations e - |+ - + |+ 0O O|e &
State equations + - |0 e + |0 - - |& ©
Algorithms + - | 0O |0 O - |6 ©
Transfer functions | & - |- © e (0O O - |& &
Block diagrams e O+ O + | O + |+ -
Signal flow graphs | - O |- © - |+ O O]+ +
Linear graphs + + |+ - - |+ + & |0 @&
Bond graphs -+ |+ - 4+ & |0 &

Legend: ©: very bad; —: bad, [I: neutral; +: good; &: very good

Table 3: Comparison of representation formalisms/languages

Level Formalism

Technological Concept schemas

Physical Linear graphs
Bond graphs

Mathematical Equations
State equations
Transfer Functions
Non-causal block diagrams
Flow graphs

Algorithmic Causal block diagrams
CSSLs/DSblock
FORTRAN/C

I/O data Trajectory data

Table 4: Classification of representation formalisms/languages

12.12 Formalism/language levels

30

description
level

technological

physical

algorithmic
.. /O data
mechanical
hydraulic paradigm
electrical formallsm
CSSL's
e|e—91mj_c__ DSblock

C/FORTRAN

O
application area
discipline continuo

discrete
geometrig

Figure 23: Description level/formalism/application domain classification

13 Multi-formalism modelling 31

PaperPulp mill Waste Water Treatment Plant

System of WWTP and Stormwater tanks (DEVS)

WWTP (DESS)

Aeration Sedimentation

"N e

Effluent

Activated sludge unit

2
Influent

‘ (DESS) ¥ Claifier
H i (DESS)
‘\ I ‘

Recycle (return) flow

Output
function
| E-E- |

Input/Output function

Stormwater tank 2

overflow

J .

Fish Farm

Figure 24: Complex system example

13 Multi-formalism modelling

Though coupled models were introduced earlier, we implicitly assumed that the components were all described in the
same formalism. Furthermore, to meaningfully associate behavioural semantics to a coupled model, closure under cou-
pling of the components’ formalism was assumed. In complex systems, this assumption may no longer be true. These
systems are characterized, not only by a large number of components, but also by the diversity of the components. One
of the observations of the European Commission’s ESPRIT Basic Research Working Group 8467 [VV96] “Simulation
for the Future: New Concepts, Tools and Applications” was that for the analysis and design of such complex systems, it
is no longer sufficient to study the diverse components separately, using the specific formalisms these components were
modelled in. Rather, it is necessary to answer questions about properties (most notably behaviour) of the whole system.

To focus the attention, Figure 24 gives an example of a complex system. The complexity lies in the diversity of the
different components, both in abstraction level and in formalism used:

e A paper and pulp mill produces paper from trees with polluted water as a side-effect. This system is modelled as a
process interaction discrete-event scheduling system (in particular, in GPSS [Gor96]).

13 Multi-formalism modelling 32

o A Waste Water Treatment Plant (WWTP) takes the polluted effluent from the mill and purifies it. Some solid waste
is taken to a landfill whereas the partially purified water flows into a lake. This system is modelled using Differential
Algebraic Equations (DAEs) describing the biochemical reactions in the WWTP.

o A Fish Farm grows fish in the lake which feed on algae which are highly sensitive to polluted water. The water is
also used for a tree plantation which supplies the paper mill. This system is modelled using the System Dynamics
formalism. The dotted feedback arrow from the fish farm to the paper mill indicates the possible disastrous impact
of poisoned fish on the productivity of workers in the mill.

It is obvious that decision-making for this system will require understanding of the behaviour of the overall system.
Studying the individual components will not suffice. The complexity of this system and its model is due to

e the number of interacting, coupled, concurrent components. Complex behaviour is often a consequence of a large
number of feedback loops.

o the variety of components such as software/hardware, continuous/discrete.

o the variety of views, at different levels of abstraction.

A model of a system such as the one described above may be valid (within a particular experimental context) at a certain
level of abstraction. This level of abstraction, which may be different for each of the components, is determined by
the available knowledge, the questions to be answered about the system’s behaviour, the required accuracy of answers,
etc. Orthogonal to the choice of model abstraction level is the selection of a suitable formalism in which the model is
described. The choice of formalism is related to the abstraction level, the amount of data that can be obtained to calibrate
the model, the availability of solvers/simulators for that formalism as well as to the kind of questions which need to be
answered. Milner, in his Turing Award lecture [Mil93] rejects the idea that there can be a unique conceptual model, or
one preferred formalism, for all aspects of something as large as concurrent systems modelling. Rather, many different
levels of explanation, different theories, languages are needed. We believe this view is amplified when arbitrarily complex
systems are studied. In our example, different formalisms are obviously used.

As an introduction, to the semantics of multi-formalism models we present the Formalism Transformation Graph (FTG) in
Figure 25. The nodes in the graph are formalisms. The horizontal line at the bottom denotes the I/O Observation Relation
at which trajectories can be described. The vertical dotted arrows denote the availability of a simulator for a formal-
ism, producing behaviour from a model in that formalism. Other arrows indicate the existence of behaviour-conserving
formalism transformations. This will be detailed later. The vertical dashed line demarcates continous model formalisms
(on the left) from discrete model formalisms (on the right). The FTG shows a plethora of formalisms, indicating that in
general, many classifications are possible. It suffices to annotate the nodes in the FTG with attributes (possibly derived
from the formalism structure) and determine equivalence classes based on those attributes.

13 Multi-formalism modelling 33

PDE
: Bond Graph a-cau

sal
Cellular Automata

DAE non-causal set

Process Interaction
Discrete Event

Syséem Dynamics

Ca@sal BI%CK iagf _
SN Petri Nets
3 Phase Approach

Discretg Event

Event Scheduling
Dlscrete Eveht

S

schedullng_\Lbrld BAE [ZEVS

oess—

[ﬁfferehge Equalons

HHEBHEZHE

EREEEREEREEREEEYEERE

o nee

¥ ; R Jy : H
state trajectory data (observation frame)

Figure 25: The Formalism Transformation Graph (FTG)

REFERENCES 34

References

[B0o098]

[Bre84]

[Bro90]

[Cas93]

[Cel91]

[CL8&9]

[Cla92]

[CS92]

[Gor96]
[Har88]
[HG97]

[HNO6]

[K1i85]

[KVVGY4]

[KVVGY3]

[LK91]
[LWOI5]

[MBO02]

[Mil93]

Grady Booch. Object-Oriented Analysis and Design with Applications. Object Technology Series. Addison-
Wesley, second edition, 1998.

Peter C. Breedveld. Physical Systems Theory in Terms of Bond Graphs. PhD dissertation, University of
Twente, Enschede, Netherlands, 1984.

Jan F. Broenink. Computer-Aided Physical-Systems Modeling and Simulation: a bond-graph approach. PhD
dissertation, University of Twente, Enschede, The Netherlands, 1990.

Christos G. Cassandras. Discrete Event Systems. Irwin, 1993.
Francois E. Cellier. Continuous System Modeling. Springer-Verlag, New York, 1991.
John Carroll and Darrell Long. Theory of Finite Automata. Prentice Hall, 1989.

Filip Claeys. HGPSS: Object-georiénteerde “process-interaction” Simulatie. Master’s thesis, Ghent Univer-
sity (UGent), Department of Applied Mathematics, Biometrics and Process Control (BIOMATH), Coupure
links 653, B-9000 Gent, Belgium, June 1992.

Bruce A. Cota and Robert G. Sargent. A modification of the process interaction world view. ACM Transac-
tions on Modeling and Computer Simulation, 2(2):109-129, April 1992.

Geoffrey Gordon. System Simulation. Prentice Hall of India, second edition, 1996.
David Harel. On visual formalisms. Communications of the ACM, 31(5):514-530, May 1988.

David Harel and Eran Gery. Executable object modeling with statecharts. IEEE Computer, pages 31-42,
1997.

David Harel and Amnon Naamad. The statemate semantics of statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293-333, October 1996.

George J. Klir. Architecture of Systems Problem Solving. Plenum Press, 1985.

Eugene J.H. Kerckhoffs, Hans Vangheluwe, Ghislain C. Vansteenkiste, and Philippe Geril. Improving
the modelling and simulation process. Progress Report 1994:1, ESPRIT Basic Research Working Group
8467, Ghent University (UGent), Department of Applied Mathematics, Biometrics and Process Control
(BIOMATH),Coupure links 653, B-9000 Gent, Belgium, 1994.

Eugeéne J.H. Kerckhoffs, Hans Vangheluwe, Ghislain C. Vansteenkiste, and Philippe Geril. Improving
the modelling and simulation process. Progress Report 1995:1, ESPRIT Basic Research Working Group
8467, Ghent University (UGent), Department of Applied Mathematics, Biometrics and Process Control
(BIOMATH),Coupure links 653, B-9000 Gent, Belgium, 1995.

Averill M. Law and David W. Kelton. Simulation Modeling and Analysis. McGraw-Hill, 1991.

D.A. Linkens and H. Wang. Qualitative bond graph reasoning in control engineering - part i: Qualitative bond
graph modeling and controller design. In Francois E. Cellier and José J. Granda, editors, 1995 International
Conference on Bond Graph Modeling and Simulation (ICBGM °95), number 1 in Simulation, pages 183-188,
Las Vegas, January 1995. Society for Computer Simulation, Simulation Councils, Inc. Volume 27.

Pieter J. Mosterman and Gautam Biswas. A modeling and simulation methodology for hybrid dynamic
physical systems. Transactions of the Society for Computer Simulation International, 2002.

Robin Milner. Elements of interaction. Communications of the ACM, 36(1):70-89, January 1993. Turing
Award Lecture.

REFERENCES 35

[Nan81]

[SBI95]

[Sch74]
[VV96]

[Weg90]

[Wym67]

[Zei97]

[ZPKO00]

Richard E. Nance. The time and state relationships in simulation modeling. Communications of the ACM,
24(4):173-179, April 1981.

J.E.E. Sharpe and R.H. Bracewell. The use of bond graph reasoning for the design of interdisciplinary
schemes. In Frangois E. Cellier and José J. Granda, editors, 1995 International Conference on Bond Graph
Modeling and Simulation (ICBGM ’95), number 1 in Simulation, pages 116-121, Las Vegas, January 1995.
Society for Computer Simulation, Simulation Councils, Inc. Volume 27.

Thomas J. Schriber. Simulation Using GPSS. Wiley, 1974.

Hans Vangheluwe and Ghislain C. Vansteenkiste. SiE: Simulation for the Future. Simulation, 66(5):331 —
335, May 1996.

Peter Wegner. Concepts and paradigms of object-oriented programming. OOPS Messenger, 1(1):7-87,
August 1990.

A. Wayne Wymore. A Mathematical Theory of Systems Engineering — the Elements. Wiley Series on Systems
Engineering and Analysis. Wiley, 1967.

Bernard P. Zeigler. Objects and Systems: Principled Design with Implementations in C++ and Java.
Springer-Verlag, 1997.

Bernard P. Zeigler, Herbert Prachofer, and Tag Gon Kim. Theory of Modelling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systems. Academic Press, second edition, 2000.

