Timed Discrete Event Modelling and Simulation

e extend State Automata with “time in state”
e equivalent to Event Graphs “time to transition”

= schedule events

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 1/54

(timed) Discrete Event Models

states

red

state trajectory

50

events to_red

Finite State Automaton
d

to_green

to_yellow

McGill, October, 2002 hv@cs.mcgill.ca

100 L 15 t

to_green to_yellowto_red

Event (Scheduling) Graph

schedule schedule

in15 in 50 @

schedule
in 100

COMP 522A Modelling and Simulation

2/54

Discrete Event Modelling and Simulation

e Model : objects and relationships among objects
e Object : characterized by attributes to which values can be assigned

e Attributes:
— indicative

— relational

e Values: of a type

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 3/54

Time and State Relationships

e [ndexing Attribute: enables state transitions
Time is most common.

e Instant: value of System Time at which the value of at least one attribute
of an object can be assigned.

e Interval: duration between two successive instants.
e Span: contiguous succession of one or more intervals.

e State of an object: enumeration of all attribute values at a particular
instant.

e State of the system: all object states at a particular instant.

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 4/54

Single Server Queueing System

0@ Q. B2
o R Re —

Departure
Physical View
e =
Departure
Arrival Cashier
Queue

[IAT distribution] [ST distribution]

Abstract View

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation

5/54

Queueing System State Trajectory

Input Events,

Arrivalf

. 40 50

E1 H2

! !

queue_lengthy i i
2F - - b - e e e

| |
4 - _i . ':_QI ____________

: v .

0 * >
10 20 30 40 50 T

cashier_statej

Busy{ - Q - - - -
. I
Idle ! ; ;
] »
10 20 3|b 40 50 T
|
Output Events \ i I
Departuref - - - - - - - - 9 """ |
H H
} i >
10 20 30 40 50
E3 E4

McGill, October, 2002

hv@cs.mcgill.ca

state=
queue_length x cashier_state

COMP 522A Modelling and Simulation

6/54

Time and State Relationships

e Activity: state of an object over an interval

e Event: change in object state, occurring at an instant.
Initiates an activity

— Determined: occurrence based on time (“time event”)

— Contingent: based on system conditions (“state event”)
e Object activity: state of object between two events for that object

e Process: succession of states of object over a span

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 7/54

Event/Object Activity/Process

Cust2 Process

A
\4

Cust2 Activity Cust2 Activity
queue pay cashier

\ 4

Custi Prdlacess

A

|
Cust1 Adtivity

|

|
<

|

|

|

|

pay cashier
|
I -
| ’ >
Custi IArrival Cust1 End pay cashier t
Cust1 Start Ipay cashier ' Custi|Leave
|
! |
! Cust2 Arrival Cust2 End Queueing Cust2 End Pay cashier
I Cust2 Start Queueing Cust2 Start pay cashier Cust2'Leave
| | |
| | | |

Event

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 8/54

Event Scheduling

e |dentify objects and their attributes
e |dentify system attributes (global)
e Define what causes changes in attribute value as event

e Write event routine for each event:
— modify state (attributes)

— schedule event(s) at t + At, At > 0
e Priorities for tie-breaking

e Event scheduling logic

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 9/54

Cashier-queue Event Scheduling Model

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 10/54

declare variables:

t : Time
queue_length : PosInt
cashier_state : {Idle, Busy}

declare events:
start, arrival, departure, end

define events:

start event:
/* scheduled first automatically by simulator */

/* initializations */
queue_length = 0

cashier state = Idle

/* schedule end of simulation */
schedule end absolute end_time

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 11/54

/* schedule first arrival */
schedule arrival relative 0

arrival event:
schedule arrival relative Random(IATmean, IATspread)
if (queue_length == 0)
1f (cashier state == Idle)
cashier_state = Busy
schedule departure relative Random (SERVmean, SERVspread)
else
queue_length++
else /* queue_length != 0 */
queue_length++

departure event:
if (queue_length == 0)
cashier_state = Idle
else /* queue_length != 0 */
queue_length--
schedule departure relative Random (SERVmean, SERVspread)

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 12/54

end event:
/* terminates simulation */
/* process/output performance metrics */
print time, queue_length /* current */

print average_queue_length

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 13/54

McGill, October, 2002

Event Scheduling Kernel

start

\ 4

(time

)

initializations (schedule "start" event)

\ 4

time flow mechanism:

A 4

select next event
from event list

state variables;
performance variabl

2

Event List:
[(ev1,t1),(ev2,t2), ...]

event event event

routine routine
k+1

routine

hv@cs.mcgill.ca COMP 522A Modelling and Simulation

\ 4

([event)

routine
llendll

output
performance
metrics;

cleanup;

L -

end

14/54

Input Generation

A “model” of input (sequence of Inter Arrival Times):
e Trace driven

e Auto generating (bootstrapping)

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 15/54

McGill, October, 2002

Cashier-queue Event List

time

20

30

hv@cs.mcgill.ca

Event List State set: queue_size x cashier_status

Initialized to:

empty queue

idle cashier

arrival pre-scheduled at time 10

ARR
10

Current_event

Process current event:
set time to current event time
update state:

cashier busy
schedule next arrival at t+IAT()
schedule departure at t+ST()
remove current event from list

20 30

Current_event

(0

Process current event:
set time to current event time
update state:

cashier remains busy

queue length increases
schedule next arrival at t+IAT()
remove current event from list

DEP ARR

30 100 (1

Current_event

Process current event:
set time to current event time
generate departure output
update state:
cashier remains busy
(customer from queue)
queue length decreases
schedule departure at t+ST()
remove current event from list

DEP ARR
50 100
| °

Current_event

y Idle)

s Busy)

s Busy)

. Busy)

COMP 522A Modelling and Simulation

16/54

McGill, October, 2002

Queueing System State Trajectory

Input Events,

Arrivalt - - @ - - @- - - - - - - - - - - - - - - -

. 40 50
E1 E2
| |
queue_lengthy i i
o T T
| |
1 - - _i . ':_QI ____________
' v .
0 * >
10 20 30 40 50 T
| | |
| | ' state=
cashier_state4 | | !
| | |
| | !
Busy---: i > Q- - - -
: : | :
Idle & | : ;
| >
10 20 3|b 40 50 T
|
Output Events \ i I
Departuref - - - - - - - - 9 """ |
1 1
1 1
} i >
10 20 30 40 50
E3 E4

hv@cs.mcgill.ca

COMP 522A Modelling and Simulation

queue_length x cashier_state

17/54

Termination Conditions

e Empty Event List

Need to stop generating arrivals after ¢,,; when auto-generating arrivals
e Schedule Termination Event

— process statistics

— cleanup

— stop

— caveat: process all final events !

x use reserved priority
* re-schedule

e Similarly: schedule initialization/setup

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 18/54

Event Scheduling (dis)advantages

e advantage: run-time efficient

e disadvantage: hard to understand model

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 19/54

Activity Scanning (rule-based)

Activity:

e condition: must be satisfied for activity to take place.
Becomes true only at event times.

e actions: operations performed when condition becomes true
Time-advance mechanism:
e fixed time-step

Also known as Two Phase Approach

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 20/54

Cashier-queue Activity Scanning Model

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 21/54

declare (and initialize) variables:
t : Time

queue_length : PosInt = 0
cashier_state : {Idle, Busy} = Idle
t_arrival : Time = 0

t_depart : Time = plusInf

declare activities:
queue_pay, depart, end

queue_pay activity
condition: t >= t_arrival
actions:
if (queue_length == 0)
1f (cashier state == Idle)
keep queue_length ==
cashier_state = Busy
t_depart = t + Random(SERVmean, SERVspread) /* service time */
else
queue_length++

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 22/54

else /* queue_length != 0 */
queue_length++, keep cashier_state == Busy

t_arrival = t + Random(IATmean, IATspread) /* inter arrival time */

depart activity
condition: t >= t_departure
actions:
if (queue_length == 0)
cashier_state = Idle
else /* queue_length != 0 */
queue_length--, keep cashier_state == Busy
t_depart = t + Random(SERVmean, SERVspread) /* service time */

end activity

condition: t >= t_end

actions:

print t, queue_length /* current */

print avg_queue_length /* performance metric */

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 23/54

Activity Scanning

start

Y
[initializations | Cdiscrete time variable)
Y
. time flow mechanism: state variables;
discrete time step . performance variables
phase
v
> activity scan phase 2
I—
Y Y Y Y
(activity) (activity (activity) (activity)
1 k k+1 "end"
condition condition condition condition
output
actions actions actions performance
metrics;
cleanup;
v A M end

McGill, October, 2002

hv@cs.mcgill.ca

COMP 522A Modelling and Simulation

24/54

Activity Scanning (dis)advantages

e advantage: declarative model

e disadvantages:
— inaccurate if changes occur in between time-steps

— run-time inefficient (fixed time-step)

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 25/54

Three Phase Approach

e Bound to occur activities: unconditional state changes. Pre-scheduled.

e Conditional activites

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 26/54

Three Phase Approach

|
<t|me)

time flow mechanism: state variables;
select earliest time on EL performance variables
A phase
v Event List (EL):
execute all B activities [(activityB1,t1),(activityB2,t2), ...]
on EL due now
| B phase|
| |
_~l activity scan .|
A A,
' ‘ (activity) (activity) factivity] activity
(activity (activity) (activity C e.n.d - B"end B1 Bk Blk+1) |1
C1 Ck C(k+1) condition
condition condition condition actions actions actions actions actions
actions actions actions ,,c,,u,,ik.].tf:,,. trics;
cleanup;
_/ / N \ I
Y

COMP 522A Modelling and Simulation 27/54

McGill, October, 2002 hv@cs.mcgill.ca

Three Phase Approach (dis)advantages

e advantage: performance added to Activity Scanning

e disadvantage: mixing two views

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 28/54

Process Interaction Simulation Kernel

e Thomas J. Schriber. Simulation Using GPSS “The Red Book”. Wiley,
1974.

e Thomas J. Schriber. Simulation Using GPSS/H. Wiley, 1990.
® http://isgwww.cs.uni-magdeburg.de/ pelo/sle/sa5/sab2.shtml
e GPSS World http://www.minutemansoftware.com/

e AToM? modelling GUI http://atom3.cs.mcgill.ca/

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 29/54

GPSS Process Interaction Simulation Kernel

Data Structures: chains. A transactions is on exactly one chain at a time !

e (1) Current Events Chain (CEC):
Transactions, waiting for a condition, at current time.

e (1) Future Events Chain (FEC):
Transactions waiting for a known future time.

e (0...n) User Chain (UC):
Transactions waiting to be UNLINKed by a user transaction.

e (0...m) Interrupt Chain (IC):
Transactions waiting for the end of an interrupt.

e (0...p) Match Chain (MC):
Transactions waiting for a (Match, Assemble, Gather) rendezvous.

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 30/54

Transaction Life

e A transaction moves through GPSS blocks (as far as possible).
e Internally, its structure is on exactly one of the chains.

e Structure of a transaction:
unique Xact ID, current block, next block (attempt), move time, priority,

e Ordering:

— On CEC: decreasing priority.
— On FEC: increasing move time, FIFO(FCFS) irrespective of priority.

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 31/54

Process Interaction: Transaction Life

Transaction Creation

P

ADVANCE
CEL FEL

move time = clock time

TERMINATE

\ 4

Transaction Destruction

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 32/54

GPSS Process Interaction Simulation Procedure

Initializations

Clock Update Phase
current time = increasing move-time
move time of first xact on
Future Events List (FEL) (FEL: [xact1,x1ct2, ...])
transfer all xacts with
move-time = current time e N\
to the Current Events List; CEL
order by priority 5
xact1’ | |8
xact?’ | |38
—> Scan Phase xact3’ | &
move next object on CEL =
through as far as possible
through its process description .
N/
Y > e - ™\
Xacts to move ? Process Interaction model
(e.g., GPSS block diagram)
[J
terminate
simulation ? GENERATE 10, 5
QUEUE wait
SEIZE cashier
Q DEPART wait
ADVANCE 5, 3
output RELEASE cashier
performance metrics; TERMINATE 1
cleanup;
end \ J

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 33/54

Operational Semantics of
Process-oriented Simulation Languages: tDemos

e Simula-style
e QOperational semantics (Plotkin)
e Scheduling of Events, Synchronisation

e Birtwistle and Tofts (SCS Transactions, 10(4), 1994, 299-333)

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 34/54

Cashier-Queue: GPSS Process Interaction View

GENERATE 10, 5

QUEUE wait
SEIZE cashier
DEPART wait

ADVANCE 5, 3
RELEASE cashier
TERMINATE 1

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 35/54

Process Interaction (dis)advantages

e advantage: declarative model, high-level “process view”

e disadvantage: rather inefficient

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 36/54

General disadvantages

e (here) not formally defined, is possible
e non-modular, is possible

= DEVS formalism

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 37/54

World Views: Classification

“Discrete” Formalisms

Discrete Event Formalisms

Discrete Time Formalisms
Process Interaction
]

I
1
I
]
I

Three Phase

Activity Difference finite State Statecharts A hod
Scanning Equations Autopata ! ppr'oac H
Y \ N, [} 1 1
\‘ \\ S ,I 1 I
.]
\ \ AN 1 Event Scheduling I
\~~ \ \\ ,’ Pid g ,’
~~~~~ ~~~~ \\ ’ R ’¢’ ’,a’
~ ~ \. 1 P - -
~ - -
\ Vi ,/ - ”f
\\ 1 ’ ”I"'—
/ f:,a’

~
S~ S
~o ~o
~ ~
~~“~:\~ N -
N -
e P

COMP 522A Modelling and Simulation

hv@cs.mcgill.ca

McGill, October, 2002

38/54



(Pseudo-) Random-number Generators

e SY S model is deterministic + random constructs
e randomness = not enough detail known or don’t care
e randomness: characterized by distribution

e In SYS: draw from distribution and
Monte-Carlo run multiple deterministic simulations.

e Alternatives:
— Transform to deterministic.

— Markov Chains (analytical).

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 39/54



Probability Distributions

e Continuous vs. discrete
e Probability Density Function (f(x))
e Cumulative Probability Function (F (X))

e see probability course: Poisson, Erlang, ...

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 40/54



Pseudo-random
e Sample from distribution (U (0, 1))

e Reproducability/comparison of experiments !
— science needs reproducable results
— makes debugging easier

— Identical random numbers to compare different systems

e Quality of generator:
— appear uniformly distributed
— non-correlated
— fast and doesn’t need much storage
— long period, dense (full) coverage

— provision for streams (subsegments)

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation

41/54



Linear Congruential Generators

Z; = (aZi—1 + c)mod m

m is modulus

a is multiplier

c is increment

Zy is seed

c = 0 is called multiplicative LCG

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 42/54



Generators ctd.

e Composite Generators

e Tausworthe generators (operate on bits)
e LEcuyer, Devroye (non-uniform)

e Testing RNG: empirical vs. theoretical

e References: Knuth, Law & Kelton

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 43/54



Marse and Roberts’ portable RNG

Z[i] = (630360016 * Z[i — 1])mod (2°" — 1)
e Prime modulus multiplicative linear congruential generator.
e Based on Fortran UNIRAN code.
e Multiple (100) streams are supported with seeds spaced 100,000 apart.
e Include file: rand.h
e C file: rand.c

e Example use: randtest.c

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 44/54



Non-uniform continuously distributed RNG

Inverse Transformation Method

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 45/54



Gathering Statistics (report generation)

1. counters

2. summary measures
3. utilization

4. occupancy

5. distributions and transit times

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 46/54



Counters

In all previous examples: keep/update counters (as state vars) !
e numbers of entities of different types in the system
e number of times a particular event occurred

e basis for statistics (performance metrics)

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 47/54



Summary Measures

e minima and maxima:
compare new values to current min and max, update when necessary

e mean of a set of N observations x;,i=1,2,...,N

1 N
mzﬁizzlxl'

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 48/54



Summary Measures (ctd.)

e standard deviation (from mean)

— need to calculate m first — need to keep all observations

— sum of squares may grow very large (accuracy J.)

N N
Z(m —x)* = lez — Nm?
i=1 i=1

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 49/54



The fraction (or %) of time each individual entity is engaged

busy

idle

McGill, October, 2002

Utilization

..............

1 2 i N
: : : : time
it start it b ite ‘'t end

tb te

hv@cs.mcgill.ca COMP 522A Modelling and Simulation

50/54



Average Use and Occupancy

for groups and classes of entities

..........

............

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation

51/54



Average Use and Occupancy (ctd.)

e Average use over time (¢; are times of change)

1 N
A= nilli+1 — 1
lend — Ustart lzzl l( " l)

Example use: average queue length.

e Occupancy: average number in use with respect to MAX

A

0=——
MAX

No bookkeeping of individual entity information required, only fotal use (n;)

and when change occurs. This, as opposed to for example average transit

time computation where individual times must be kept.

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation



Distributions and Transit Times

N intervals

overflow
one

n LA iLe2a Le(N-1)A

éLower Limit EUpper Limit

Number of intervals N, Uniform interval size A, Lower tabulation limit L.
Implementation: table of interval counters.
Global accumulation: number of entries, sum of entries, sum of squares.

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 53/54



Distributions and Transit Times (ctd.)

e Transit times: use clock as time stamp, enter in table at end of transit.

e Distribution of number of entitities: measure at uniform intervals of time.

McGill, October, 2002 hv@cs.mcgill.ca COMP 522A Modelling and Simulation 54/54



