Causal Block Diagram assignment

Fall Term 2003

General Information

e The due date is Sunday 5 October 2002, before 23:55.

e Submissions must be done via WebCT. Beware that WebCT’s clock may differ slightly from yours. As described
on the Assignments page, all results must be uploaded to WebCT and accessible from links in the index.html file.
There is no need to upload AToM?.

o The assignment must be made in teams of two people. It is understood that all partners will understand the complete
assignment (and will be able to answer questions about it).

e Grading will be done based on correctness and completeness of the solution. Do not forget to document your
requirements, assumptions, design, implementation and modelling and simulation results in detail !

e Extensions, if given, will involve extending not only the alotted time, but also the assignment.

The assignment

1. You will use the meta-modelling environment AToM* AToM3-2.2.tgz to implement a Discrete-Time Causal Block
Diagram simulator.

All relevant files are found in the directory CausalBlockDiagram/. Example models are found in the directory
CausalBlockDiagram/models/.

Implementing the simulator means you will modify the file SIM_startResume.py.

You may wish to have a look at SIM_pause.py and SIM_reset.py. Actually, if you wish to understand how the
plotting works, have a look in the Plotting/ directory. The PlotTest.py is a stand-alone script demonstrating
the working of the plotter.

As a starting point, you MUST read and understand DUMP_model.py. It contains examples of ALL parts of the
AToM? API you’ll need.

The SIM_startResume.py given is the solution to last year’s assignment. It will work on models
circle_CausalBlockDiagram_mdl.py, ballistic_CausalBlockDiagram_mdl.py,

and lorenz_CausalBlockDiagram_mdl.py. That solution provides a Continuous-Time Causal Block Diagram
simulator. Also, there is no SimControl block. Rather, simul_t_init, simul_t_final, simul_delta_t, and so
on are given as explicitly as global model attributes.

2. The simulator must be able to handle Discrete-Time models as well as purely algebraic models as shown in model
algebraTest_CausalBlockDiagram_mdl.py. The model is shown in Figure 1 Note how the time_max is 0.0.
Your simulator should calculate a solution at that time only.

3. The simulator must be able to detect dependency loops. The model loopTest_CausalBlockDiagram_mdl.py
depicted in Figure 2 for example contains an algebraic loop. You must isolate the algebraic loop and HighLight
the links involved. An example of highlighting is given in DUMP_model . py.

4. Above all, the simulator must be able to handle delay blocks. The delayTest_CausalBlockDiagram mdl.py
model depicted in Figure 3 is an example. Note how in this example, the simulation termination condition uses the

SimControl

termSignal (>0)

time 0

IHIc—:‘max

X

PLOT

Figure 1: Algebraic Model CBD

state variable x rather than time. When x reaches the value 50. 0, the simulation should stop.

5. Unlike last year, you must now keep signal values in the signal attribute (an AToM? list) of each link node. You
can now ignore block attributes such as block_out_value and block_tmp_value.

6. Note how you must handle all block types except Integrator, Derivative, Time, FilelO.
7. You must build a model for the “circle test”. This is the Ordinary Differential Equation (ODE)
¥ = —x,x(0) =0,x'(0) = 1.

Using integrator blocks, this is shown in Figure 4. You must us a discretized version (using only Delay blocks) of
the ODE. You must however use a discretization of Derivatives rather than of Integrators.

8. You must include plots of relevant simulation results in your solution report. The best way to do thisisto File/Generate Pos
from the AToM3 menu bar. You can then convert this .eps file to a bitmap using for example the display tool on
Linux machines.

Using the AToM? environment

Download AToM3-2.2.tgz archive.

Expand it locally (for example with the command tar --ungzip -xvof AToM3-2.2.tgz if you're working on a UNIX
machine. This will create a directory AToM3-2. 2.

To start the AToM? environment, python ATOM3.py. python should be at least version 2.2 of Python (this is installed in
the SOCS labs). On UNIX, the script atom3 is a shortcut for the above command. On windows, you can just click on the
ATOM3 icon to launch it.

AToM? will be started with the CausalBlockDiagram formalism loaded. You can either build your own model (and
File/Save it) or File/open an existing one. In the directory CausalBlockDiagram/models/ you will find the example
models.

When AToM? starts with the CausalBlockDiagram formalism, it will use a number of files in the CausalBlockDiagram
directory:

SimControl

termSignal (>0)

time 0

| | |OUT

v
M
=
|

X

PLOT

Figure 2: Model containing Algebraic Loop

MODEL_plotWindow.py contains code which gets called when you click on a Plot icon. It opens a plot window.
When pressing “new” in that window, it is possible to add plot items (one variable as a function of another).

e EXPORT_LaTeX.py constains code which gets called when you press the “to LaTeX” button.

e EXPORT_Mfile.py contains code which gets called when you press the “M-File” button.

e SIM_startResume.py contains the startResume(parentApp, model) method which gets called when you press the
“Exp Start/Resume” button. Currently it starts a thread which contains a data generator. You have to replace this
generator by a Time Slicing simulator which produces data using the model structure and node attributes.
SIM_pause.py and contains code which pauses the simulation. It gets called when the “Exp Pause” button is
pressed.

SIM_reset.py contains code which gets executed when the “Exp Reset” button is pressed.

SimControl

time

termSignal (>0)

0

X

A

PLOT

JRUE

FALSE

Figure 3: Model with Delay Block

Figure 4: Circle Test Model

