The State Automata Formalism

- Untimed models of discrete event systems
- Languages
- Regular Expressions
- Automata
	- **–** (Deterministic) Finite State Automata
	- **–** Nondeterministic Finite State Automata
	- **–** State Aggregation
	- **–** Discrete Event Systems as State Automata

Untimed models

- Level of specification: I/O System (state based, deterministic)
- $\bullet\,$ Time Base = $\mathbb N$ (time $=$ progression index)
- Dynamic but
	- **–** only sequence (order) of states traversed matters
	- **–** not when in state or how long in state
- Discrete Event: event set *E*

Languages – Regular Expressions – Automata language *^L*, defined over alphabet *^E* (events)

- set of strings formed from *E* $\begin{aligned} \mathsf{degular\; Expressions} &\rightarrow \mathsf{Log} \ \mathsf{over\;alphabet\;E}\;(\text{events}) \equiv \ \mathsf{d}\; \mathsf{from\;} E \ \mathsf{e}\; \mathsf{input\;behaviours:} \ \{\mathsf{e}, \mathsf{ARR}, \mathsf{DER}, \mathsf{ARR}\; \mathsf{ARP}, \dots \end{aligned}$
- Example: all possible input behaviours:

 $L = \{\epsilon, ARR, DEP, ARR, ARR, DEP, \ldots\}$

• Regular expression: shorthand notation for a regular language *ARR DEP, ARR* $*$ *DEP*^{*}, (*DEP*|*ARR*)

Concatenation, Alternatives (|), Kleene closure (\ast).

• Finite State Automaton (model): *generate/accept* a language

Finite State Automaton

 E *,X , f ,x* $_0$ *,F*

- \bullet *E* is a finite alphabet
- *X* is a finite state set
- \bullet *f* is a state transition function, $f: X \times E \rightarrow X$
- x_0 is an initial state, $x_0 \in X$
- *F* is the set of final states

Dynamics $(x'$ is next state):

ion,
\n
$$
x' = f(x, e)
$$

FSA recognizes Language

• *extended* transition function:

$$
f:X\times E*\to X
$$

$$
f: X \times E^* \to X
$$

tion:

$$
f: X \times E^* \to X
$$

$$
f(x, ue) = f(f(x, u), e)
$$

- \bullet A string u over the alphabet E is recognized by a FSA (E, X, f, x_0, F) if $f(x_0,u)=x$ where $x\in F$.
- \bullet The language $L(A)$ recognized by a FSA $A = (E, X, f, x_0, F)$ is the set of strings $\{u: f(x_0,\mu)\in F\}$.

FSA graphical notation: State Transition Diagram

Simulation steps

FSA Operational Semantics

Nondeterministic Finite State Automaton

$$
NFA = (E, X, f, x_0, F)
$$

$$
f: X \times E \to 2^X
$$

- Monte Carlo simulation (if probabilities added)
- Transform to equivalent FSA (aka DFA)

Nondeterministic Finite State Automaton

Constructed Deterministic Finite State Automaton

Transformation Rules

Rule LHS

Rule RHS

Managing Complexity: State Aggregation $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

$$
(E, X, f, x_0, F)
$$

$$
R \subseteq X
$$

R consists of equivalent states with respect to F if for any $x,y\in R, x\neq y$ and any string $u,$

$$
f(x, u) \in F \Leftrightarrow f(y, u) \in F
$$

^x and *y* are equivalent for as far as "accepting/rejecting" input strings is concerned.

State Aggregation Algorithm

- 1. Mark (x,y) for all $x\in F, y\not\in F$
- 2. For every pair (x,y) not marked in previous step:
- (a) If $(f(x,e),f(y,e))$ is marked for some $e\in E$, then: |
|
|
|
|
	- i. Mark (*x*, *y*
	- ii. Mark all unmarked pairs (w,z) in the list of $(x,y).$ Repeat this step for each (w,z) until no more markings possible.
	- (b) If no $(f(x,e),f(y,e))$ is marked, the for every $e\in E$:
- i. If $f(x,e) \neq f(y,e)$ then add (x,y) to the list of $f(x,e) \neq f(y,e)$

Pair which remain unmarked are in equivalence set

digit sequence (123) detector FSA

State Reduced FSA

State Automata to model Discrete Event Systems

- *X* is state space Q
- All inputs are strings from an alphabet E (the events) $- X$
- \bullet State transition function $x'=f(x,e) -\delta$
- Allow *X* and *E* to be countable rather than finite
- Introduce *feasible events*

State Automaton

 E , X , Γ , f , x_0

- *E* is a countable event set
- *X* is a countable state space
- $\bullet\;\; \Gamma(x)$ is the set of feasible or enabled events $x \in X, \Gamma(x) \in E$
- \bullet f is a state transition function, $f: X \times E \rightarrow X$, only defined for $e \in \Gamma(x)$
- x_0 is an initial state, $x_0 \in X$

$$
(E, X, \Gamma, f)
$$

omits *^x*⁰ and describes ^a class of State Automata.

Feasible/Enabled Events

- \bullet On transition diagram: not feasibe \Rightarrow not marked
- Meaning: *ignore* non-feasible events
- $\bullet\,$ Why not $f(x,e)=x$ for non-feasible events ?

State Automata for Queueing Systems

Abstract View

State Automata for Queueing Systems: customer centered

$$
\sum_{a} \left(\int_{a}^{b} \left(\int_{a}^{2} \left(\int_{a}^{3} \left(\int_{a}^{4} \right) \right) \right) dx \right) dx
$$
\n
$$
E = \{a, d\}
$$
\n
$$
X = \{0, 1, 2, \ldots\}
$$
\n
$$
\Gamma(x) = \{a, d\}, \forall x > 0, \Gamma(0) = \{a\}
$$
\n
$$
f(x, a) = x + 1, \forall x \ge 0
$$
\n
$$
f(x, d) = x - 1, \forall x > 0
$$

State Automata for Queueing Systems: server centered (with breakdown)

State Automata for Queueing Systems: server centered (with breakdown) *s s c c c c c fs, c, b, r*

$$
E = \{s, c, b, r\}
$$

Events: *^s* denotes service starts, *^c* denotes service completes, *b* denotes breakdown, *^r* denotes repair. $\begin{aligned} \texttt{I} & \texttt{I} & \texttt{I} & \texttt{I} \end{aligned}$ $\texttt{I} & \texttt{I} & \texttt{I} \end{aligned}$ om
ver
{*r*

$$
X = \{I, B, D\}
$$

State: *I* denotes idle, *B* denotes busy, *D* denotes broken down.

$$
\Gamma(I) = \{s\}, \Gamma(B) = \{c, b\}, \Gamma(D) = \{r\}
$$

$$
f(I, s) = B, f(B, c) = I, f(B, b) = D, f(D, r) = I
$$

Interpretations/Uses

- Generate all possible behaviours.
- Accept all allowed input sequences \Rightarrow code generation.
- Verification of properties.

State Automata with Output $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

$$
(E,X,\Gamma,f,x_0,Y,g)
$$

- *Y* is ^a countable output set,
- \bullet *g* is an output function

$$
(E, X, \Gamma, f, x_0, Y, g)
$$

but set,
on

$$
g: X \times E \to Y, e \in \Gamma(x)
$$

State Automata for Adventure Games

State Automata (later: Statecharts) for Graphical User Interface Specification

Limitiations/extensions of State Automata

- Adding time?
- Hierarchical modelling ?
- Concurrency by means of \times
- States are represented explicitly
- Specifying control logic, synchronisation ?