Overview

- Petri net notation and definition (no dynamics)
- Introducing State: Petri net marking
- Petri net dynamics
- Capacity Constrained Petri nets
- Petri net models for ...
	- **–** FSA
	- **–** Nondeterminism
	- **–** Data Flow Computation
	- **–** Communication Protocols
	- **–** Queueing Systems
- Petri nets vs. State Automata
- Analysis of Petri nets
	- **–** Boundedness
	- **–** Liveness and Deadlock
	- **–** State Reachability
	- **–** State Coverability
	- **–** Persistence
	- **–** Language Recognition
- The Coverability Tree
- Extensions: colour, time, . . .

Petri nets

- Formalism similar to FSA
- Graphical notation
- C.A. Petri 1960s
- Additions to FSA:
	- **–** Explicitly (graphically) represent when event is enabled
		- \rightarrow describe control logic
	- **–** Elegant notation of concurrency
	- **–** Express non-determinism

Petri net notation and definition (no dynamics)

 P ^{*, T*} *, A , w*

- \bullet $P = \{p_1, p_2, \ldots\}$ is a finite set of *places*
- $T = \{t_1, t_2, \dots\}$ is a finite set of *transitions*
- \bullet $A \subseteq (P \times T) \cup (T \times P)$ is a set of *arcs*
- $w: A \to \mathbb{N}$ is a *weight function*

Note: no need for countable *P* and *T*.

Derived Entities

- \bullet $I(t_j) = \{p_i : (p_i, t_j) \in A\}$ set of *input places* to transition t_j $(\equiv$ conditions for transition)
- $O(t_j) = \{p_i: (t_j,p_i) \in A\}$ set of *output places* from transition t_j $(\equiv$ affected by transition)
- Transitions \equiv events
- \bullet similarly: input- and output-transitions for p_i
- graphical representation: Petri net graph (multigraph)

-
- $T = \{t\}$
- $A = \{(H_2,t), (O_2,t), (t,H_2O)\}$
- \bullet $w((H_2,t)) = 2, w((O_2,t)) = 1, w((t,H_2O)) = 2$

Pure Petri net

No self-loops:

$$
\nexists p_i \in P, t_j \in T : (p_i, t_j) \in A, (t_j, p_i) \in A
$$

• Can convert impure to pure Petri net

Impure to Pure Petri net

Introducing State: Petri net Markings

- Conditions met ? Use tokens in places $\frac{1}{2}$
- Token assignment \equiv marking x

$$
x:P\to\mathbb{N}
$$

• A marked Petri net

is in places
\n
$$
ng x
$$
\n
$$
x : P \to \mathbb{N}
$$
\n
$$
(P, T, A, w, x_0)
$$

 x_0 is the *initial marking*

• The *state* **x** of a marked Petri net

$$
(P, T, A, w, x_0)
$$

ng
ked Petri net

$$
\mathbf{x} = [x(p_1), x(p_2), \dots, x(p_n)]
$$

Number of tokens need not be bounded (cfr. State Automata states).

State Space of Marked Petri net

All *ⁿ*-dimensional vectors of nonnegative integer markings

 $X = \mathbb{N}^n$

 \bullet Transition $t_j \in T$ is *enabled* if

ectors of nonnegative integer m
\n
$$
X = \mathbb{N}^n
$$
\nenabeled if

\n
$$
x(p_i) \geq w(p_i, t_j), \forall p_i \in I(t_j)
$$

Example with marking, enabled

Petri Net Dynamics

State Transition Function f of marked Petri net (P, T, A, w, x_0)

 $f: \mathbb{N}^n \times T \to \mathbb{N}^n$

is defined for transition $t_j \in T$ if and only if

 $x(p_i) \geq w(p_i, t_j), \forall p_i \in I$ $\mathsf{rk}\mathsf{ed} \ \mathsf{d} \ \mathsf{d$ *tj*

If $f(\mathbf{x}, t_j)$ is defined, set $\mathbf{x}' = f(\mathbf{x}, t_j)$ where ֺ

$$
f: \mathbb{N}^n \times T \to \mathbb{N}^n
$$

ition $t_j \in T$ if and only if

$$
x(p_i) \ge w(p_i, t_j), \forall p_i \in I(t_j)
$$

d, set $\mathbf{x}' = f(\mathbf{x}, t_j)$ where

$$
x'(p_i) = x(p_i) - w(p_i, t_j) + w(t_j, p_i)
$$

- State transition function *f* based on *structure* of Petri net
- Number of tokens need not be conserved (but can)

Example "firing"

- Use PNS tool http://www.ee.uwa.edu.au/ braunl/pns/
- Select Sequential Manual execution
- Use PNS tool http://www.ee.
● Select Sequential Manual ex
• Transition: $[2,2,0] \rightarrow [0,1,2]$

- order of firing not determined (due to untimed model)
- selfloop
- "dead" net

Conflict, choice, decision

Semantics

- sequential vs. parallel
- Handle nondeterminism:
	- 1. User choice
	- 2. Priorities
	- 3. Probabilities (Monte Carlo)
	- 4. Reachability Graph (enumerate all choices)

Application: Critical Section

Reachability Graph

Algebraic Description of Dynamics

Firing vector **^u**: transition *j* firing

on *j* firing
\n
$$
\mathbf{u} = [0, 0, \dots, 1, 0, \dots, 0]
$$
\n
$$
a_{ji} = w(t_j, p_i) - w(p_i, t_j)
$$

• Incidence matrix **A** :

$$
a_{ji} = w(t_j, p_i) - w(p_i, t_j)
$$

• State Equation

$$
\mathbf{x}' = \mathbf{x} + \mathbf{u}\mathbf{A}
$$

Infinite Capacity Petri net

-
- New transition rule

Can transform to infinite capacity net

- 1. Add complimentary place p' with initial marking $x_0(p')=K(p)$ 2. Between each transition *t* and complimentary place p' with initial marking $x_0(p')$
2. Between each transition *t* and complimentary places *p*
-
- add complimentary place p^* with intriduced by and complete
between each transition t and completed arcs (t,p^{\prime}) or (p^{\prime},t) where _{זור}
tra
, p $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
- \bullet $w(t,p') = w(p,t)$ • add arcs (t, p') \bullet
• $w(t, p') = w(p, t)$
• $w(p', t) = w(t, p)$ |
|
|
|
	-

Capacity Constrained Petri net

Equivalence proof: use Reachability Graph

[p1K2 , p2K1]

Petri net as State Machine

Representing ^a Petri net as ^a State Machine

Construct Reachability Graph

- Reachability Graph is State Machine
- \bullet States are tuples (p_1, p_2, \ldots, p_n) $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
- \bullet Events correspond to t_i firing
- May be infinite

Representing ^a State Machine as ^a Petri net

- 1. no output
- 2. with output
- \Rightarrow automatic (though inefficient) transformation

FSA without output

FSA with output

Petri net models for Queueing Systems

Abstract View

Capacity Constraints for Resource Conservation

Simple Server/Queue Model

Model departure explicitly

Model Server Breakdown

Modular Composition: Communication Protocol

Build incrementally:

- 1. Single transmitter: FSA vs. Petri net
- 2. Two transmitters competing for channel

Pros/Cons of Petri net models (depends on goals !):

- Petri net is more complex than FSA for single transmitter
- More insight
- Incremental modelling
- Modular modelling
- Intuitive modelling of concurrency

Single Transmitter FSA

Single Transmitter Petri net

Concurrent, Non-interacting Transmitters

Concurrent, Interacting Transmitters

Analysis of Petri nets

Analysis of logical or qualitative behaviour. Resource sharing \Rightarrow fair usage of resources:

- Boundedness
- Conservation
- Liveness and Deadlock
- State Reachability
- State Coverability
- Persistence
- Language Recognition

Boundedness

- Example: upper bound on number of customers in queue.
- Definition: A place $p_i \in P$ in a Petri net with initial state \mathbf{x}_0 is k - bounded or k - safe if $x(p_i)\leq k$ for all states in all possible sample paths.
- \bullet A 1-bounded place is called safe.
- \bullet If a place is k -bounded for some k , the place is *bounded*.
- If all places are bounded, the Petri net is bounded.

Bounded vs. Unbounded

Conservation

Token represents resource, process, ...

Sum $Busy+Idle$ tokens must be *constant* for all states in all sample paths

Conservation, weighted sum

2 Transm $+$ Idle $+$ trsChannel $=$ constant

Conservation

A Petri net with initial state x_0 is $\mathsf{conservative}$ with respect to $\gamma = [\gamma_1, \gamma_2, \ldots, \gamma_n]$ if

 $\Sigma_{i=1}^n \gamma_i$ x $(p_i) = constant$

for all states in all possible sample paths.

Liveness and Deadlock

- Cyclic dependency \Rightarrow wait indefinitely
- Deadlock
- Deadlock avoidance: avoid certain states in sample paths

Deadlock in Queueing system with Rework

McGill, October, 2002 hv@cs.mcgill.ca hvoltages however and Simulation 45/58

Deadlock resolved

Liveness

Given initial state x_0 , a transition in a Petri net is:

- L0-live (dead): if the transition can never fire.
- L1-live: if there is some firing sequence from x_0 such that the transition can fire at least once.
- L2-live: if the transition can fire at least *k* times for some given positive integer *k*.
- L3-live: if there exists some infinite firing sequence in which the transition appears infinitely often.
- L4-live: if the transition is L1-live for every possible state reached from **x**0.

Liveness example

State Reachability

- \bullet A state **x** in a Petri net is *reachable* from a state \mathbf{x}_0 if there exists a sequence of transitions starting at x_0 such that the state eventually becomes **x**.
- Build/use reachability graph.
- Deadlock avoidance is ^a special case of reachability.

State Coverability

- In a Petri net with initial state x_0 , a state **y** is *coverable* if there exists a sequence of transitions starting at x_0 such that the state eventually becomes **x** and $x(p_i) \geq y(p_i).$
- Related to L1-liveness: minimum number of tokens required to enable a transition.

Persistence

- More than one transition enabled by the same set of conditions (choice, undeterminism).
- If one fires, does the other remain enabled ?
- A Petri net is *persistent* if, for any two enabled transitions, the firing of one cannot disable the other.
- Non-interruptedness (of multiple processes).

Language Recognition

Language defined by Petri net

 \equiv

set of transition sequences which can fire

Coverability Notation

- Root node
- **•** Terminal node
- Duplicate node

Coverability Notation

• Node *dominance*

Coverability Notation

\n
$$
\mathbf{x} = [x(p_1), x(p_2), \dots, x(p_n)]
$$

\n
$$
\mathbf{y} = [y(p_1), y(p_2), \dots, y(p_n)]
$$

\n
$$
\forall i \in \{1, \dots, n\}
$$

\nor at least some $i \in \{1, \dots, n\}$

x $>_{d}$ **y** (**x** dominates **y**)if

Node dominance

\n
$$
\mathbf{x} = [x(p_1), x]
$$
\n
$$
\mathbf{y} = [y(p_1), x]
$$
\n
$$
\mathbf{x} >_{d} \mathbf{y} \text{ (x dominates y) if}
$$
\n
$$
1. \ x(p_i) \geq y(p_i), \forall i \in \{1, \dots, n\}
$$

- 2. $x(p_i) > y(p_i)$ for at least some $i \in \{1, \ldots, n\}$
- \bullet The symbol ω represents *infinity*

x \ge_d **y**

For all *i* such that $x(p_i) > y(p_i)$, replace $x(p_i)$ by ω

$$
\omega + k = \omega = \omega - k
$$

Coverability Tree Construction

- 1. Initialize $\mathbf{x} = \mathbf{x}_0$ (initial state)
- 2. Fore each new node **^x**,

evaluate the transition function $f(\textbf{x},t_i)$ for all $t_j \in T$:

- (a) if $f(\mathbf{x},t_j)$ is undefined for all $t_j \in T$, then $\mathbf x$ is a terminal node.
- (b) if $f(\mathbf{x},t_j)$ is defined for some $t_j \in T$, create a new node $\mathbf{x}' = f(\mathbf{x}, t_j).$ if $f(\mathbf{x}, t_j)$ is defined for some $t_j \in T$,
create a new node $\mathbf{x}' = f(\mathbf{x}, t_j)$.
i. if $x(p_i) = \omega$ for some p_i , set $x'(p_i) = \omega$.
	-
- ii. If there exists a node **y** in the path from root node \mathbf{x}_0 (included) if $x(p_i) = \omega$ for some p_i , set
If there exists a node **y** in th
to **x** such that **x'** \geq_d **y**, set x to **x** such that $\mathbf{x}' > d \mathbf{y}$, set $x'(p_i) = \omega$ for all p_i such that If $\frac{1}{x}$ p_i) $>$ y (p_i |
|
|
|
|

iii. Otherwise, set $\mathbf{x}' = f(\mathbf{x}, t_j).$

3. Stop if all new nodes are either *terminal* or *duplicate*

Coverability Tree Example: Cashier/Queue

Coverability Tree Example: Cashier/Queue

Applications of the Coverability Tree

- Boundedness: ω does not appear in coverability tree
- $\bullet\,$ Bounded Petri net \Rightarrow reachability graph
- Conservation: $\gamma_i = 0$ for ω positions
- Inverse problem: what are γ and *C* ?
- Coverability: inspect coverability tree
- Limitations: deadlock detection