
Overview
� Petri net notation and definition (no dynamics)

� Introducing State: Petri net marking

� Petri net dynamics

� Capacity Constrained Petri nets

� Petri net models for . . .

– FSA

– Nondeterminism

– Data Flow Computation

– Communication Protocols

– Queueing Systems

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 1/58



� Petri nets vs. State Automata

� Analysis of Petri nets

– Boundedness

– Liveness and Deadlock

– State Reachability

– State Coverability

– Persistence

– Language Recognition

� The Coverability Tree

� Extensions: colour, time, . . .

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 2/58



Petri nets
� Formalism similar to FSA

� Graphical notation

� C.A. Petri 1960s

� Additions to FSA:

– Explicitly (graphically) represent when event is enabled

� describe control logic

– Elegant notation of concurrency

– Express non-determinism

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 3/58



Petri net notation and definition (no dynamics)

� P� T � A � w �

� P� � p1 � p2 ��� � � 	 is a finite set of places

� T� � t1 � t2 �� � � 	 is a finite set of transitions

� A 
 � P� T �� � T� P � is a set of arcs

� w : A � � is a weight function

Note: no need for countable P and T .

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 4/58



Derived Entities
� I � t j �� � pi : � pi � t j ��� A 	 set of input places to transition t j

(� conditions for transition)

� O � t j �� � pi : � t j � pi ��� A 	 set of output places from transition t j

(� affected by transition)

� Transitions� events

� similarly: input- and output-transitions for pi

� graphical representation: Petri net graph (multigraph)

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 5/58



Example Petri net
� P� � H2 � O2 � H2O 	

� T� � t 	

� A� � � H2 � t � � � O2 � t � � � t � H2O � 	

� w � � H2 � t � �� 2 � w � � O2 � t � �� 1 � � w � � t � H2O � �� 2

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 6/58



Pure Petri net
� No self-loops:

��� pi� P� t j� T : � pi � t j ��� A � � t j � pi ��� A

� Can convert impure to pure Petri net

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 7/58



Impure to Pure Petri net

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 8/58



Introducing State: Petri net Markings
� Conditions met ? Use tokens in places

� Token assignment� marking x

x : P � �

� A marked Petri net

� P� T � A � w � x0 �

x0 is the initial marking

� The state x of a marked Petri net

x� � x � p1 � � x � p2 � ��� � � � x � pn � �
Number of tokens need not be bounded (cfr. State Automata states).

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 9/58



State Space of Marked Petri net
� All n-dimensional vectors of nonnegative integer markings

X� � n

� Transition t j� T is enabled if

x � pi �� w � pi � t j � ��� pi� I � t j �
McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 10/58



Example with marking, enabled

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 11/58



Petri Net Dynamics

State Transition Function f of marked Petri net � P� T � A � w � x0 �

f : � n� T � � n

is defined for transition t j� T if and only if

x � pi �� w � pi � t j � ��� pi� I � t j �

If f � x � t j � is defined, set x� � f � x � t j � where

x� � pi �� x � pi ��� w � pi � t j ��� w � t j � pi �

� State transition function f based on structure of Petri net

� Number of tokens need not be conserved (but can)

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 12/58



Example “firing”
� Use PNS tool http://www.ee.uwa.edu.au/ braunl/pns/

� Select Sequential Manual execution

� Transition: � 2 � 2 � 0 � � � 0 � 1 � 2 �

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 13/58



Example
� order of firing not determined (due to untimed model)

� selfloop

� “dead” net

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 14/58



Conflict, choice, decision

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 15/58



Semantics
� sequential vs. parallel

� Handle nondeterminism:

1. User choice

2. Priorities

3. Probabilities (Monte Carlo)

4. Reachability Graph (enumerate all choices)

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 16/58



Application: Critical Section

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 17/58



Reachability Graph

[1,0,1,0,1]

[0,1,0,0,1] [1,0,0,1,0]

t1 t2

t1e t2e

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 18/58



Algebraic Description of Dynamics
� Firing vector u: transition j firing

u� � 0 � 0 ��� � � � 1 � 0 �� � � � 0 �

� Incidence matrix A :

a ji� w � t j � pi ��� w � pi � t j �

� State Equation

x� � x� uA

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 19/58



Infinite Capacity Petri net
� Add Capacity Constraint: K : P � �

� New transition rule

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 20/58



Can transform to infinite capacity net

1. Add complimentary place p� with initial marking x0 � p� �� K � p �

2. Between each transition t and complimentary places p�

� add arcs � t � p� � or � p� � t � where

� w � t � p� �� w � p � t �

� w � p� � t �� w � t � p �

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 21/58



Capacity Constrained Petri net

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 22/58



Equivalence proof: use Reachability Graph
[1 , 0]

[2 , 0]

[0 , 0] [0 , 1]

[1 , 1]

[2 , 1]

t1

t3t2

t1

t2
t4

t4
t1

t1

[p1K2 , p2K1]

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 23/58



Petri net as State Machine

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 24/58



Representing a Petri net as a State Machine

Construct Reachability Graph

� Reachability Graph is State Machine

� States are tuples � p1 � p2 �� � � � pn �

� Events correspond to ti firing

� May be infinite

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 25/58



Representing a State Machine as a Petri net

1. no output

2. with output

� automatic (though inefficient) transformation

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 26/58



FSA without output

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 27/58



FSA with output

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 28/58



Petri net models for Queueing Systems

Physical View

Queue Cashier

Departure

Arrival

Departure

Queue

Abstract View

Cashier
[ST distribution][IAT distribution]

Arrival

Capacity Constraints for Resource Conservation

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 29/58



Simple Server/Queue Model

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 30/58



Model departure explicitly

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 31/58



Model Server Breakdown

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 32/58



Modular Composition: Communication Protocol

Build incrementally:

1. Single transmitter: FSA vs. Petri net

2. Two transmitters competing for channel

Pros/Cons of Petri net models (depends on goals !):

� Petri net is more complex than FSA for single transmitter

� More insight

� Incremental modelling

� Modular modelling

� Intuitive modelling of concurrency

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 33/58



Single Transmitter FSA

I M T

Idle Message present Transmitting

ack received

arr

arr arr

transmit

timeout

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 34/58



Single Transmitter Petri net

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 35/58



Concurrent, Non-interacting Transmitters

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 36/58



Concurrent, Interacting Transmitters

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 37/58



Analysis of Petri nets

Analysis of logical or qualitative behaviour.

Resource sharing � fair usage of resources:

� Boundedness

� Conservation

� Liveness and Deadlock

� State Reachability

� State Coverability

� Persistence

� Language Recognition

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 38/58



Boundedness
� Example: upper bound on number of customers in queue.

� Definition: A place pi� P in a Petri net with initial state x0 is

k� bounded or k� safe if

x � pi �� k for all states in all possible sample paths.

� A 1� bounded place is called safe.

� If a place is k� bounded for some k, the place is bounded.

� If all places are bounded, the Petri net is bounded.

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 39/58



Bounded vs. Unbounded

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 40/58



Conservation

Token represents resource, process, . . .

Sum Busy� Idle tokens must be constant for all states in all sample paths

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 41/58



Conservation, weighted sum

2 Transm� Idle� trsChannel� constant

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 42/58



Conservation

A Petri net with initial state x0 is

conservative with respect to γ� � γ1 � γ2 �� � � � γn � if

Σn
i 1γix � pi �� constant

for all states in all possible sample paths.

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 43/58



Liveness and Deadlock
� Cyclic dependency � wait indefinitely

� Deadlock

� Deadlock avoidance: avoid certain states in sample paths

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 44/58



Deadlock in Queueing system with Rework

� QueueFree � Queue1 � Rework �� � 0 � 1 � 1 �
McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 45/58



Deadlock resolved

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 46/58



Liveness

Given initial state x0, a transition in a Petri net is:

� L0-live (dead): if the transition can never fire.

� L1-live: if there is some firing sequence from x0 such that the

transition can fire at least once.

� L2-live: if the transition can fire at least k times for some given positive

integer k.

� L3-live: if there exists some infinite firing sequence in which the

transition appears infinitely often.

� L4-live: if the transition is L1-live for every possible state reached from

x0.

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 47/58



Liveness example

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 48/58



State Reachability
� A state x in a Petri net is reachable from a state x0 if there exists a

sequence of transitions starting at x0 such that the state eventually

becomes x.

� Build/use reachability graph.

� Deadlock avoidance is a special case of reachability.

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 49/58



State Coverability
� In a Petri net with initial state x0, a state y is coverable if there exists a

sequence of transitions starting at x0 such that the state eventually

becomes x and x � pi �� y � pi � .

� Related to L1-liveness: minimum number of tokens required to enable

a transition.

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 50/58



Persistence
� More than one transition enabled by the same set of conditions

(choice, undeterminism).

� If one fires, does the other remain enabled ?

� A Petri net is persistent if, for any two enabled transitions, the firing of

one cannot disable the other.

� Non-interruptedness (of multiple processes).

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 51/58



Language Recognition

Language defined by Petri net

�

set of transition sequences which can fire

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 52/58



Coverability Notation
� Root node

� Terminal node

� Duplicate node

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 53/58



Coverability Notation
� Node dominance

x� � x � p1 � � x � p2 � ��� � � � x � pn � �

y� � y � p1 � � y � p2 � ��� � � � y � pn � �

x ! d y (x dominates y)if

1. x � pi �� y � pi � ��� i� � 1 ��� � � � n 	

2. x � pi � ! y � pi � for at least some i� � 1 ��� � � � n 	

� The symbol ω represents infinity

x ! d y

For all i such that x � pi � ! y � pi � , replace x � pi � by ω

ω� k� ω� ω� k

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 54/58



Coverability Tree Construction

1. Initialize x� x0 (initial state)

2. Fore each new node x,

evaluate the transition function f � x � ti � for all t j� T :

(a) if f � x � t j � is undefined for all t j� T , then x is a terminal node.

(b) if f � x � t j � is defined for some t j� T ,

create a new node x� � f � x � t j � .
i. if x � pi �� ω for some pi, set x� � pi �� ω.

ii. If there exists a node y in the path from root node x0 (included)

to x such that x� ! d y, set x� � pi �� ω for all pi such that

x� � pi � ! y � pi �

iii. Otherwise, set x� � f � x � t j � .
3. Stop if all new nodes are either terminal or duplicate

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 55/58



Coverability Tree Example: Cashier/Queue

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 56/58



Coverability Tree Example: Cashier/Queue

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 57/58



Applications of the Coverability Tree
� Boundedness: ω does not appear in coverability tree

� Bounded Petri net � reachability graph

� Conservation: γi� 0 for ω positions

� Inverse problem: what are γ and C ?

� Coverability: inspect coverability tree

� Limitations: deadlock detection

McGill, October, 2002 hv@cs.mcgill.ca Modelling and Simulation 58/58


