The State Automata Formalism

e Untimed models of discrete event systems
e Languages
e Regular Expressions

e Automata
— (Deterministic) Finite State Automata
— Nondeterministic Finite State Automata
— State Aggregation

— Discrete Event Systems as State Automata

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 1/31

Untimed models

e Level of specification: 1/0O System (state based, deterministic)
e Time Base = N (time = progression index)

e Dynamic but
— only sequence (order) of states traversed matters

— not when in state or how long in state

e Discrete Event: event set E

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 2/31

Languages — Regular Expressions — Automata

e /anguage L, defined over alphabet £ (events) =
set of strings formed from E

e Example: all possible input behaviours:

L = {e,ARR,DEP,ARR ARR DEP,...}

e Regular expression: shorthand notation for a regular language

ARR DEP,ARR x DEPx, (DEP|ARR)x

Concatenation, Alternatives (|), Kleene closure (x).

e Finite State Automaton (model): generate/accept a language

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 3/31

Finite State Automaton

(E7X7f7x07F)
e [is a finite alphabet
e X is a finite state set

e f is a state transition function,
X XE—X

® X is an initial state, xg € X
e F'is the set of final states

Dynamics (x’ is next state):

X = f(x7 8)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 4/31

FSA recognizes Language

e extended transition function:
[XXEx—X

f(x,ue) = f(f(x,u),e)

e A string u over the alphabet E is recognized by a FSA (E, X, f,xo,F)
if f(xo,u) =xwherex¢€ F.

e The language L(A) recognized by a FSA A = (E, X, f,xo,F)
is the set of strings {u : f(xo,u) € F}.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 5/31

FSA graphical notation: State Transition Diagram

@~ @

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 6/31

Simulation steps

— AToM3 v0.2.1 using: FniteStateAutomaia BERse
Fle Model Transformation Graphics |
%ﬁnitestatemmmatal Model ops | Editentity | Connect | Delete | Insert model | Expand model | Exit |
“I.ﬁsual ops smooth | Insert point | Delete point | Change connector |
— Edil value o
news | edit | delete |K
0
1
0
£
oK Cancel | |
— Graph- Grammar execution controls] o
Executing Graph- Grammar: F3ASimulator
Last executed rule:
Step Continuous | Close h
1
=

I I

Modelling and Simulation: Finite State Automata 7/31

Hans Vangheluwe hv@cs.mcgill.ca

input 0

Rule 1 Rule 2
|||u|||||> llllllllll>
Current State Current State
input 1 .
p— input 0
Rule 2
Rule 2
ITTIIY =2 TRTTTTIT Y =
Current State Current State
end of input
Final Action

lllIllllllllllllllllllllll’ "Acceptlnputll

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 8/31

FSA Operational Semantics

Rule 1 (priority 3) Locate Initial Current State

1=

Rule 2 (priority 1) State Transition

Current State

Current State

condition:
matched(4).input == input[0]
3

4
<COPIEDECOPIED>

, s e
) =

CANY=)_ <ANY>/ <ANY> ;@ A
action:

remove(input[0])

Rule 3 (priority 2) Local State Transition

1

Current State Current State

condition:
matched(4).input == input[0]

4
ANY>/ <ANY> = SQPIED&COPIED>
3 3
action: @

remove(input[0])

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata

9/31

Nondeterministic Finite State Automaton

NFA:(E,X,f,Xo,F)
f:XxE—2X

e Monte Carlo simulation (if probabilities added)

e Transform to equivalent FSA (aka DFA)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 10/31

Nondeterministic Finite State Automaton

Cdrunk

Coffee [drinkC
Button

thirsty

@i
J

hirsty

- drinkT
Button

Drunk

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 11/31

Constructed Deterministic Finite State Automaton

drinkC$drink

TDrunk

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 12/31

Hans Vangheluwe

Transformation Rules

Hame [NF&2DF &
news | edit | delete |I

eliminateMDT 3
elimUnreachModes 1
joinEqual States 2
eliminateselfHDT 4

Rules

InitialAction edit

FinalAction edit

0K

|

Cancel

hv@cs.mcgill.ca

Modelling and Simulation: Finite State Automata

13/31

Rule LHS

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 14/31

Rule RHS

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 15/31

Managing Complexity: State Aggregation

(E7X7f7x07F)
RCX

R consists of equivalent states with respect to F
if for any x,y € R,x # y and any string u,

fru) e F o f(yu) €F

x and y are equivalent for as far as “accepting/rejecting” input strings is
concerned.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 16/31

State Aggregation Algorithm

1. Mark (x,y) forallx e F,y ¢ F

2. For every pair (x,y) not marked in previous step:

(@) If (f(x,e), f(y,e)) is marked for some e € E, then:
.. Mark (x,y)
ii. Mark all unmarked pairs (w,z) in the list of (x,y). Repeat this
step for each (w,z) until no more markings possible.

(b) If no (f(x,e), f(y,e)) is marked, the for every e € E:
.. If f(x,e) # f(y,e) then add (x,y) to the list of f(x,e) # f(y,e)

Pair which remain unmarked are in equivalence set

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 17/31

digit sequence (123) detector FSA

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 18/31

State Reduced FSA

N
W

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 19/31

State Automata to model Discrete Event Systems

e X is state space — —Q
e All inputs are strings from an alphabet E (the events) — — X
e State transition function x’ = f(x,e) — —90

e Allow X and E to be countable rather than finite

e Introduce feasible events

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 20/31

State Automaton

(E7X7F7f7x0)
e [is a countable event set
e X is a countable state space

e I'(x) is the set of feasible or enabled events
xeX,I'(x) e E

e f is a state transition function,
f:X xE — X, only defined for e € T'(x)

e xp is an initial state, xg € X
(E7X7 F? f)
omits xg and describes a class of State Automata.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 21/31

Feasible/Enabled Events

e On transition diagram: not feasibe =- not marked
e Meaning: ignore non-feasible events

e Why not f(x,e) = x for non-feasible events ?

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 22/31

State Automata for Queueing Systems

o NIRRT

Arrival

o

Arrival
[IAT distribution]

Hans Vangheluwe hv@cs.mcgill.ca

Queue Cashier
Physical View
Cashier
Queue

[ST distribution]

Abstract View

—_—
Departure

—
Departure

Modelling and Simulation: Finite State Automata

23/31

State Automata for Queueing Systems:
customer centered

OJO01010010%.
E={a,d}
X =1{0,1,2,...}
I'(x) ={a,d},Vx>0,I'(0) = {a}

flx,a)=x4+1,¥x>0
flx,d)=x—1,Vx>0

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 24/31

State Automata for Queueing Systems:
server centered (with breakdown)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 25/31

State Automata for Queueing Systems: server
centered (with breakdown)

E ={s,c,b,r}

Events: s denotes service starts, ¢ denotes service completes, b denotes
breakdown, r denotes repair.

X ={1,B,D}
State: I denotes idle, B denotes busy, D denotes broken down.
['(I) ={s},[(B) = {c,b},['(D) = {r}

f(I,S) :B,f(B,C) :Ivf(Bvb) :D,f(D,I’) =1

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata

26/31

Interpretations/Uses

e (Generate all possible behaviours.
e Accept all allowed input sequences = code generation.

e \Verification of properties.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 27/31

State Automata with Output

(E,X,F,f,X(),Y,g>
e Y is a countable output set,

e g is an output function

g: XXE—=Yeecl(x)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 28/31

State Automata for Adventure Games

Skoop

Hans Vangheluwe

atres=t

atre =t

F

hv@cs.mcgill.ca

PCLaal
PCTaaly
Flato Les
" Platow "

e

H
Q—I—»
2

Modelling and Simulation: Finite State Automata

)

29/31

State Automata (later: Statecharts) for
Graphical User Interface Specification

COMPACT Fli (- TIC Pawse 01:09:35 > 1l
”g@ L.l | - L. A Vel 53% 01415
RGN Mo matching CDDE entyy Found, o e
1 & : 4" b
i |
M. T 7v ‘ b= |m: v| 144 13

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata

30/31

Limitiations/extensions of State Automata

e Adding time ?

e Hierarchical modelling ?

e Concurrency by means of X

e States are represented explicitly

e Specifying control logic, synchronisation ?

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 31/31

