Petri Nets

1. Finite State Automata

2. Petri net notation and definition (no dynamics)
3. Introducing State: Petri net marking

4. Petri net dynamics

5. Capacity Constrained Petri nets

6. Petri net models for ...
e FSA
e Nondeterminism
e Data Flow Computation

e Communication Protocols
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7. Queueing Systems
8. Petri nets vs. State Automata

9. Analysis of Petri nets
e Boundedness
e Liveness and Deadlock
e State Reachability
e State Coverability
e Persistence

e Language Recognition
10. The Coverability Tree

11. Extensions: colour, time, ...
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Finite State Automaton

(E7X7f7x07F)
e [ is a finite alphabet
e X is a finite state set

e f is a state transition function,
X XE—X

® X is an initial state, xg € X
e F'is the set of final states

Dynamics (x’ is next state):

X = f(x7 8)
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FSA graphical notation: State Transition Diagram

@~ @
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FSA Operational Semantics

Rule 1 (priority 3) Locate Initial Current State

1=

Rule 2 (priority 1) State Transition

Current State

Current State

condition:
matched(4).input == input[0]
3

4
<COPIEDECOPIED>

, s e
) =

CANY=)_ <ANY>/ <ANY> ;@ A
action:

remove(input[0])

Rule 3 (priority 2) Local State Transition

1

Current State Current State

condition:
matched(4).input == input[0]

4
ANY>/ <ANY> = SQPIED&COPIED>
3 3
action: @

remove(input[0])
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Simulation steps

— AToM3 v0.2.1 using: FniteStateAutomaia BERse
Fle Model Transformation Graphics |
%ﬁnitestatemmmatal Model ops | Editentity | Connect | Delete | Insert model | Expand model | Exit |
“I.ﬁsual ops smooth | Insert point | Delete point | Change connector |
— Edil value o
news | edit | delete |K
0
1
0
£
oK Cancel | |
— Graph- Grammar execution controls ] o
Executing Graph- Grammar: F3ASimulator
Last executed rule:
Step Continuous | Close h
1
=

I I
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input 0

Rule 1 Rule 2
|||u|||||> llllllllll>
Current State Current State
input 1 .
p— input 0
Rule 2
Rule 2
ITTIIY =2 TRTTTTIT Y =
Current State Current State
end of input
Final Action

lllIllllllllllllllllllllll’ "Acceptlnputll
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State Automaton

(E7X7F7f7x0)
e [ is a countable event set
e X is a countable state space

e I'(x) is the set of feasible or enabled events
xeX,I'(x) e E

e f is a state transition function,
f:X xE — X, only defined for e € T'(x)

e xp is an initial state, xg € X
(E7X7 F? f)
omits xg and describes a class of State Automata.
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State Automata for Queueing Systems

o MR —

Arrival

o

Arrival
[IAT distribution]

Hans Vangheluwe hv@cs.mcgill.ca

Departure
Queue Cashier
Physical View
—
Departure
Cashier
Queue

[ST distribution]

Abstract View
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State Automata for Queueing Systems:
customer centered

OJO01010010%.
E={a,d}
X =1{0,1,2,...}
I'(x) ={a,d},Vx>0,I'(0) = {a}

flx,a)=x4+1,¥x>0
flx,d)=x—1,Vx>0
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State Automata for Queueing Systems:
server centered (with breakdown)
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State Automata for Queueing Systems: server
centered (with breakdown)

E ={s,c,b,r}

Events: s denotes service starts, ¢ denotes service completes, b denotes
breakdown, r denotes repair.

X ={1,B,D}
State: I denotes idle, B denotes busy, D denotes broken down.
['(I) ={s},[(B) = {c,b},['(D) = {r}

f(I,S) :B,f(B,C) :Ivf(Bvb) :D,f(D,I’) =1
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Limitiations/extensions of State Automata

e Adding time ?

e Hierarchical modelling ?

e Concurrency by means of X

e States are represented explicitly

e Specifying control logic, synchronisation ?
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Petri nets

e Formalism similar to FSA
e (Graphical notation
e C.A. Petri 1960s

e Additions to FSA:

— Explicitly (graphically) represent when event is enabled
— describe control logic

— Elegant notation of concurrency

— Express non-determinism
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Petri net notation and definition (no dynamics)

(P,T,A,w)

e P={p1,p2,...}is afinite set of places
o T ={t1,nr,...} is afinite set of transitions
e AC(PxT)U(T x P) is a set of arcs

e w:A — Nis a weight function

Note: no need for countable P and T'.
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Derived Entities

o [(tj) ={pi: (pistj;) € A} set of input places to transition ¢;
(= conditions for transition)

o O(tj) ={pi: (tj,pi) € A} set of output places from transition ¢;
(= affected by transition)

e Transitions = events
e similarly: input- and output-transitions for p;

e graphical representation: Petri net graph (multigraph)
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Example Petri net

Qx"“mﬂ t H_20
| L)

e P={H,,0,,H,0}

o T ={t}

e A={(Hy,1),(0,1),(t,H,0)}

o w((Hz,1)) =2,w((02,1)) = 1,,w((1,H0)) =2
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Pure Petri net

e No self-loops:
ﬁpi EP,Z‘]' eT: (pi,l‘j) EA,(tj,pi) cA

e Can convert impure to pure Petri net
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Impure to Pure Petri net

L

v/ Loy
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Introducing State: Petri net Markings

e (Conditions met ? Use tokens in places

e Token assignment = marking x

x:P—N

e A marked Petri net
(P7 T7A7 w, XO)

Xo is the initial marking
e The state x of a marked Petri net
x = [x(p1),x(p2),...,x(Pn)]

Number of tokens need not be bounded (cfr. State Automata states).
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State Space of Marked Petri net

e All n-dimensional vectors of nonnegative integer markings
X=N'
e Transition; € T is enabled if

x(pi) > w(pirt;),Vp; € 1(t))
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Example with marking, enabled

@ =S t H_%0
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Petri Net Dynamics

State Transition Function f of marked Petri net (P, T,A,w,xq)
fN'xT— N
is defined for transition ¢; € T if and only if
x(pi) > w(pi,t;),Vpi € I(t))
If f(x,t;) is defined, set X" = f(x,t;) where
X (pi) = x(pi) —w(pist;) +w(t, pi)
e State transition function f based on structure of Petri net

e Number of tokens need not be conserved (but can)
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Example “firing”

e Use PNS tool http://www.ee.uwa.edu.au/ braunl/pns/
e Select Sequential Manual execution

e Transition: [2,2,0] — [0, 1,2]

H_Z
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Example

(e

pl tl

e order of firing not determined (due to untimed model)
e selfloop

e “dead’ net
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Conflict, choice, decision

place

()

tl Hhkxaﬁhﬁf

v v

O O
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Semantics

e sequential vs. parallel

e Handle nondeterminism:
1. User choice
2. Priorities
3. Probabilities (Monte Carlo)
4

. Reachability Graph (enumerate all choices)
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Application: Critical Section
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Reachability Graph
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Algebraic Description of Dynamics

e Firing vector u: transition j firing
u=10,0,...,1,0,...,0]
e Incidence matrix A :
aji =w(tj, pi) —w(pit))

e State Equation
X' =x+UuA
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Infinite Capacity Petri net

generutetl
o

e Add Capacity Constraint: K : P — N

e New transition rule
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Can transform to infinite capacity net

1. Add complimentary place p’ with initial marking xo(p’) = K(p)

2. Between each transition r and complimentary places p’
e add arcs (¢,p’) or (p',t) where
o w(t,p') =w(p,i)
o w(p',t) =w(t,p)
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aaaaaaaaaaaaaa

Capacity Constrained Petri net




Equivalence proof: use Reachability Graph

[P1K2 , p2K1]
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Hans Vangheluwe

Petri net as State Machine
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Representing a Petri net as a State Machine

Construct Reachability Graph
e Reachability Graph is State Machine
e States are tuples (p1,p2,...,Pn)
e Events correspond to ¢; firing

e May be infinite
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Representing a State Machine as a Petri net

1. no output

2. with output

= automatic (though inefficient) transformation
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FSA without output
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FSA with output

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Petri Nets 39/69



Petri net models for Queueing Systems

o R —

Departure
Physical View
- =
Departure
Arrival Cashier
. . . Queue . . .
[IAT distribution] [ST distribution]

Abstract View

Capacity Constraints for Resource Conservation
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Hans Vangheluwe

Simple Server/Queue Model

/Nrﬂr\-iual

o
el
il
O

L
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Model departure explicitly
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Hans Vangheluwe

Model Server Breakdown

fririval

)

4
d £F

ar‘d’jual

;’:__

Idle

()
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e
|
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ey _conpl
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Modular Composition: Communication Protocol

Build incrementally:
1. Single transmitter: FSA vs. Petri net
2. Two transmitters competing for channel
Pros/Cons of Petri net models (depends on goals !):
e Petri net is more complex than FSA for single transmitter
e More insight
e Incremental modelling
e Modular modelling

e [ntuitive modelling of concurrency
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Single Transmitter FSA

ack received

transmit
—b

arr
timeout

arr arr

Idle Message present Transmitting
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Single Transmitter Petri net
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Concurrent, Non-interacting Transmitters
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Concurrent, Interacting Transmitters
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Analysis of Petri nets

Analysis of logical or qualitative behaviour.
Resource sharing = fair usage of resources:

e Boundedness

e Conservation

e Liveness and Deadlock
e State Reachability

e State Coverability

e Persistence

e Language Recognition
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Boundedness

e Example: upper bound on number of customers in queue.

e Definition: A place p; € P in a Petri net with initial state xg is
k—bounded or k—safe if

x(p;) < k for all states in all possible sample paths.
e A 1—bounded place is called safe.
e If a place is k—bounded for some k, the place is bounded.

e If all places are bounded, the Petri net is bounded.
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Bounded vs. Unbounded

bounded

Devie | O

wnbounded

(D | =
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Conservation

Token represents resource, process, . ..

,_/—/—’\:r*r‘iual
A

o
O a

4
zery_skart

a

Sum Busy + Idle tokens must be constant for all states in all sample paths
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Conservation, weighted sum

2 Transm + Idle + trsChannel = constant
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Conservation

A Petri net with initial state xg is
conservative with respect to Y= [Y1,Y2,- - -, Y] if

XL Vix(pi) = constant

for all states in all possible sample paths.
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Liveness and Deadlock

e Cyclic dependency = wait indefinitely
e Deadlock

e Deadlock avoidance: avoid certain states in sample paths
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Deadlock in Queueing system with Rework

eeeeeeee

|QueueFree, Queuel ,Rework] = [0,1,1]
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Deadlock resolved

Genern te

rii

ar‘@

ac:@d_ regejected

/(_
1+1

1 Seru1ceSt
1 1/4'X \

|
By
compl}ﬂﬁ/o\‘complﬁood
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Liveness

Given initial state xg, a transition in a Petri net is:
e LO-live (dead): if the transition can never fire.

e L1-live: if there is some firing sequence from X such that the
transition can fire at least once.

e | 2-live: if the transition can fire at least k times for some given positive
integer k.

e L3-live: if there exists some infinite firing sequence in which the
transition appears infinitely often.

e L4-live: if the transition is L1-live for every possible state reached from
X0.
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Liveness example
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State Reachabillity

e A state x in a Petri net is reachable from a state Xy if there exists a

sequence of transitions starting at X such that the state eventually
becomes x.

e Build/use reachability graph.

e Deadlock avoidance is a special case of reachability.
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State Coverability

e |n a Petri net with initial state X, a state y is coverable if there exists a
sequence of transitions starting at Xy such that the state eventually
becomes x and x(p;) > y(p;)-

e Related to L1-liveness: minimum number of tokens required to enable
a transition.
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Persistence

e More than one transition enabled by the same set of conditions
(choice, undeterminism).

e |f one fires, does the other remain enabled ?

e A Petri net is persistent if, for any two enabled transitions, the firing of
one cannot disable the other.

e Non-interruptedness (of multiple processes).
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Language Recognition

Language defined by Petri net

set of transition sequences which can fire
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Coverability Notation

e Root node
e Terminal node

e Duplicate node
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Coverability Notation

e Node dominance
X = [x(pl),x(pz), R ,x(pn)]

y = (p1),y(P2)s--.,y(Pn)]

X >4 Y (x dominates y)if

1. x(pi) 2 y(pi),Vie{l,...,n}
2. x(pi) > y(p;) for at least some i € {1,...,n}

e The symbol ® represents infinity
X>4Y
For all i such that x(p;) > y(p;), replace x(p;) by ®

O+k=0=0—*%

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Petri Nets

65/69



Coverability Tree Construction

1. Initialize x = X (initial state)

2. Fore each new node X,
evaluate the transition function f(x,#;) for all ¢; € T

(a) if f(x,;) is undefined for all ¢; € T, then x is a terminal node.
(b) if f(x,¢;) is defined for some ¢; € T,
create a new node x’ = f(x,1;).
i. if x(p;) = @ for some p;, set X' (p;) = .
ii. If there exists a node y in the path from root node X (included)
to x such that X’ >, y, set x'(p;) = o for all p; such that

X (pi) > y(pi)
ii. Otherwise, setx’ = f(x,t;).

3. Stop if all new nodes are either terminal or duplicate
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Coverability Tree Example: Cashier/Queue
,/\:rriual

o
O ()

s
sery-skart

seL_mmpl

L
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Coverability Tree Example: Cashier/Queue
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Applications of the Coverability Tree

e Boundedness: ® does not appear in coverability tree
e Bounded Petri net = reachability graph

e Conservation: y; = 0 for ® positions

e Inverse problem: what are yand C ?

e Coverability: inspect coverability tree

e Limitations: deadlock detection
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