Petri Nets

- 1. Finite State Automata
- 2. Petri net notation and definition (no dynamics)
- 3. Introducing State: Petri net marking
- 4. Petri net dynamics
- 5. Capacity Constrained Petri nets
- 6. Petri net models for ...
 - FSA
 - Nondeterminism
 - Data Flow Computation
 - Communication Protocols

- 7. Queueing Systems
- 8. Petri nets vs. State Automata
- 9. Analysis of Petri nets
 - Boundedness
 - Liveness and Deadlock
 - State Reachability
 - State Coverability
 - Persistence
 - Language Recognition
- 10. The Coverability Tree
- 11. Extensions: colour, time, ...

Finite State Automaton

$$(E,X,f,x_0,F)$$

- *E* is a finite alphabet
- *X* is a finite state set
- f is a state transition function, $f: X \times E \rightarrow X$
- x_0 is an initial state, $x_0 \in X$
- *F* is the set of final states

Dynamics (x' is next state):

$$x' = f(x, e)$$

FSA graphical notation: State Transition Diagram

FSA Operational Semantics

Hans Vangheluwe

hv@cs.mcgill.ca

Modelling and Simulation: Petri Nets

Simulation steps

State Automaton

$$(E,X,\Gamma,f,x_0)$$

- E is a countable event set
- *X* is a countable state space
- $\Gamma(x)$ is the set of feasible or enabled events $x \in X, \Gamma(x) \in E$
- f is a state transition function, $f: X \times E \to X$, only defined for $e \in \Gamma(x)$
- x_0 is an initial state, $x_0 \in X$

$$(E,X,\Gamma,f)$$

omits x_0 and describes a class of State Automata.

State Automata for Queueing Systems

Abstract View

State Automata for Queueing Systems: customer centered

$$E = \{a, d\}$$

$$X = \{0, 1, 2, \dots\}$$

$$\Gamma(x) = \{a, d\}, \forall x > 0, \Gamma(0) = \{a\}$$

$$f(x, a) = x + 1, \forall x \ge 0$$

$$f(x, d) = x - 1, \forall x > 0$$

State Automata for Queueing Systems: server centered (with breakdown)

State Automata for Queueing Systems: server centered (with breakdown)

$$E = \{s, c, b, r\}$$

Events: s denotes service starts, c denotes service completes, b denotes breakdown, r denotes repair.

$$X = \{I, B, D\}$$

State: I denotes idle, B denotes busy, D denotes broken down.

$$\Gamma(I) = \{s\}, \Gamma(B) = \{c, b\}, \Gamma(D) = \{r\}$$

$$f(I,s) = B, f(B,c) = I, f(B,b) = D, f(D,r) = I$$

Limitiations/extensions of State Automata

- Adding time ?
- Hierarchical modelling?
- Concurrency by means of ×
- States are represented explicitly
- Specifying control logic, synchronisation?

Petri nets

- Formalism similar to FSA
- Graphical notation
- C.A. Petri 1960s
- Additions to FSA:
 - Explicitly (graphically) represent when event is enabled
 - \rightarrow describe control logic
 - Elegant notation of concurrency
 - Express non-determinism

Petri net notation and definition (no dynamics)

- $P = \{p_1, p_2, ...\}$ is a finite set of *places*
- $T = \{t_1, t_2, ...\}$ is a finite set of *transitions*
- $A \subseteq (P \times T) \cup (T \times P)$ is a set of *arcs*
- $w: A \to \mathbb{N}$ is a weight function

Note: no need for *countable* P and T.

Derived Entities

- $I(t_j) = \{p_i : (p_i, t_j) \in A\}$ set of *input places* to transition t_j (\equiv conditions for transition)
- $O(t_j) = \{p_i : (t_j, p_i) \in A\}$ set of *output places* from transition t_j (\equiv affected by transition)
- Transitions ≡ events
- ullet similarly: input- and output-transitions for p_i
- graphical representation: *Petri net graph* (multigraph)

Example Petri net

- $P = \{H_2, O_2, H_2O\}$
- $\bullet \ T = \{t\}$
- $A = \{(H_2, t), (O_2, t), (t, H_2O)\}$
- $w((H_2,t)) = 2, w((O_2,t)) = 1, w((t,H_2O)) = 2$

Pure Petri net

• No self-loops:

$$\not\exists p_i \in P, t_j \in T : (p_i, t_j) \in A, (t_j, p_i) \in A$$

• Can convert impure to pure Petri net

Impure to Pure Petri net

Introducing State: Petri net Markings

- Conditions met ? Use tokens in places
- Token assignment \equiv *marking* x

$$x: P \to \mathbb{N}$$

A marked Petri net

$$(P,T,A,w,x_0)$$

 x_0 is the *initial marking*

• The state x of a marked Petri net

$$\mathbf{x} = [x(p_1), x(p_2), \dots, x(p_n)]$$

Number of tokens need not be bounded (cfr. State Automata states).

State Space of Marked Petri net

• All *n*-dimensional vectors of nonnegative integer markings

$$X = \mathbb{N}^n$$

• Transition $t_j \in T$ is *enabled* if

$$x(p_i) \ge w(p_i, t_j), \forall p_i \in I(t_j)$$

Example with marking, enabled

Petri Net Dynamics

State Transition Function f of marked Petri net (P, T, A, w, x_0)

$$f: \mathbb{N}^n \times T \to \mathbb{N}^n$$

is defined for transition $t_i \in T$ if and only if

$$x(p_i) \ge w(p_i, t_j), \forall p_i \in I(t_j)$$

If $f(\mathbf{x},t_j)$ is defined, set $\mathbf{x}'=f(\mathbf{x},t_j)$ where

$$x'(p_i) = x(p_i) - w(p_i, t_j) + w(t_j, p_i)$$

- State transition function f based on structure of Petri net
- Number of tokens need not be conserved (but can)

Example "firing"

- Use PNS tool http://www.ee.uwa.edu.au/ braunl/pns/
- Select Sequential Manual execution
- Transition: $[2,2,0] \to [0,1,2]$

Example

- order of firing not determined (due to untimed model)
- selfloop
- "dead" net

Conflict, choice, decision

Semantics

- sequential vs. parallel
- Handle nondeterminism:
 - 1. User choice
 - 2. Priorities
 - 3. Probabilities (Monte Carlo)
 - 4. Reachability Graph (enumerate all choices)

Application: Critical Section

Reachability Graph

Algebraic Description of Dynamics

Firing vector u: transition j firing

$$\mathbf{u} = [0, 0, \dots, 1, 0, \dots, 0]$$

Incidence matrix A:

$$a_{ji} = w(t_j, p_i) - w(p_i, t_j)$$

State Equation

$$\mathbf{x}' = \mathbf{x} + \mathbf{u}\mathbf{A}$$

Infinite Capacity Petri net

- Add Capacity Constraint: $K: P \to \mathbb{N}$
- New transition rule

Can transform to infinite capacity net

- 1. Add complimentary place p' with initial marking $x_0(p') = K(p)$
- 2. Between each transition t and complimentary places p'
 - add arcs (t, p') or (p', t) where
 - w(t, p') = w(p, t)
 - w(p',t) = w(t,p)

Capacity Constrained Petri net

Equivalence proof: use Reachability Graph

[p1K2, p2K1]

Petri net as State Machine

Representing a Petri net as a State Machine

Construct Reachability Graph

- Reachability Graph is State Machine
- States are tuples $(p_1, p_2, ..., p_n)$
- Events correspond to t_i firing
- May be infinite

Representing a State Machine as a Petri net

- 1. no output
- 2. with output
- \Rightarrow automatic (though inefficient) transformation

FSA without output

FSA with output

Petri net models for Queueing Systems

Capacity Constraints for Resource Conservation

Simple Server/Queue Model

Model departure explicitly

Model Server Breakdown

Modular Composition: Communication Protocol

Build incrementally:

- 1. Single transmitter: FSA vs. Petri net
- 2. Two transmitters competing for channel

Pros/Cons of Petri net models (depends on goals!):

- Petri net is more complex than FSA for single transmitter
- More insight
- Incremental modelling
- Modular modelling
- Intuitive modelling of concurrency

Single Transmitter FSA

Single Transmitter Petri net

Concurrent, Non-interacting Transmitters

Concurrent, Interacting Transmitters

Analysis of Petri nets

Analysis of *logical* or *qualitative* behaviour. Resource sharing \Rightarrow *fair* usage of resources:

- Boundedness
- Conservation
- Liveness and Deadlock
- State Reachability
- State Coverability
- Persistence
- Language Recognition

Boundedness

- Example: upper bound on number of customers in queue.
- Definition: A place $p_i \in P$ in a Petri net with initial state \mathbf{x}_0 is k-bounded or k-safe if $x(p_i) \leq k$ for all states in all possible sample paths.
- A 1—bounded place is called *safe*.
- If a place is k—bounded for some k, the place is *bounded*.
- If all places are bounded, the Petri net is bounded.

Bounded vs. Unbounded

Conservation

Token represents *resource*, *process*, ...

Sum Busy + Idle tokens must be *constant* for all states in all sample paths

Conservation, weighted sum

2 Transm + Idle + trsChannel = constant

Conservation

A Petri net with initial state x_0 is conservative with respect to $\gamma = [\gamma_1, \gamma_2, \dots, \gamma_n]$ if

$$\sum_{i=1}^{n} \gamma_i x(p_i) = constant$$

for all states in all possible sample paths.

Liveness and Deadlock

- Cyclic dependency ⇒ wait indefinitely
- Deadlock
- Deadlock avoidance: avoid certain states in sample paths

Deadlock in Queueing system with Rework

[QueueFree, Queue1, Rework] = [0, 1, 1]

Deadlock resolved

Liveness

Given initial state \mathbf{x}_0 , a transition in a Petri net is:

- L0-live (dead): if the transition can never fire.
- L1-live: if there is some firing sequence from \mathbf{x}_0 such that the transition can fire at least once.
- L2-live: if the transition can fire at least *k* times for some given positive integer *k*.
- L3-live: if there exists some infinite firing sequence in which the transition appears infinitely often.
- L4-live: if the transition is L1-live for every possible state reached from x₀.

Liveness example

State Reachability

- A state x in a Petri net is reachable from a state x₀ if there exists a sequence of transitions starting at x₀ such that the state eventually becomes x.
- Build/use reachability graph.
- Deadlock avoidance is a special case of reachability.

State Coverability

- In a Petri net with initial state \mathbf{x}_0 , a state \mathbf{y} is *coverable* if there exists a sequence of transitions starting at \mathbf{x}_0 such that the state eventually becomes \mathbf{x} and $x(p_i) \ge y(p_i)$.
- Related to L1-liveness: minimum number of tokens required to enable a transition.

Persistence

- More than one transition enabled by the same set of conditions (choice, undeterminism).
- If one fires, does the other remain enabled?
- A Petri net is *persistent* if, for any two enabled transitions, the firing of one cannot disable the other.
- Non-interruptedness (of multiple processes).

Language Recognition

Language defined by Petri net

set of transition sequences which can fire

Coverability Notation

- Root node
- Terminal node
- Duplicate node

Coverability Notation

Node dominance

$$\mathbf{x} = [x(p_1), x(p_2), \dots, x(p_n)]$$

$$\mathbf{y} = [y(p_1), y(p_2), \dots, y(p_n)]$$

 $\mathbf{x} >_d \mathbf{y}$ (\mathbf{x} dominates \mathbf{y})if

1.
$$x(p_i) \ge y(p_i), \forall i \in \{1, ..., n\}$$

- 2. $x(p_i) > y(p_i)$ for at least some $i \in \{1, ..., n\}$
- The symbol ω represents *infinity*

$$\mathbf{x} >_d \mathbf{y}$$

For all i such that $x(p_i) > y(p_i)$, replace $x(p_i)$ by ω

$$\omega + k = \omega = \omega - k$$

Coverability Tree Construction

- 1. Initialize $\mathbf{x} = \mathbf{x}_0$ (initial state)
- 2. Fore each new node \mathbf{x} , evaluate the transition function $f(\mathbf{x}, t_i)$ for all $t_j \in T$:
 - (a) if $f(\mathbf{x}, t_j)$ is undefined for all $t_j \in T$, then \mathbf{x} is a terminal node.
 - (b) if $f(\mathbf{x}, t_j)$ is defined for some $t_j \in T$, create a new node $\mathbf{x}' = f(\mathbf{x}, t_j)$.
 - i. if $x(p_i) = \omega$ for some p_i , set $x'(p_i) = \omega$.
 - ii. If there exists a node \mathbf{y} in the path from root node \mathbf{x}_0 (included) to \mathbf{x} such that $\mathbf{x}'>_d \mathbf{y}$, set $x'(p_i)=\omega$ for all p_i such that $x'(p_i)>y(p_i)$
 - iii. Otherwise, set $\mathbf{x}' = f(\mathbf{x}, t_i)$.
- 3. Stop if all new nodes are either terminal or duplicate

Coverability Tree Example: Cashier/Queue

Coverability Tree Example: Cashier/Queue

Applications of the Coverability Tree

- Boundedness: ω does not appear in coverability tree
- Bounded Petri net ⇒ reachability graph
- Conservation: $\gamma_i = 0$ for ω positions
- Inverse problem: what are γ and C?
- Coverability: inspect coverability tree
- Limitations: deadlock detection