
Process-oriented modelling

Ernesto Posse

Modelling, Simulation and Design Lab

School of Computer Science

McGill University

September 25, 2006

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 1 / 47



Some modelling formalisms

Petri Nets

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 2 / 47



Some modelling formalisms

Causal Block Diagrams

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 3 / 47



Some modelling formalisms

Causal Block Diagrams

dx

dt
= 2y + z

dy

dt
= −3x

z = x + y

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 4 / 47



Some modelling formalisms

Causal Block Diagrams

Variables are signals

A signal is a function
R → R

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 5 / 47



Some modelling formalisms

Causal Block Diagrams

A block is a (higher-order) function:

Unary block:
[R → R] → [R → R]

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 6 / 47



Process networks

Data�ow

Discrete signals: time-base: N, values: any set X

N → X

This is the same as a stream of data:

〈x0, x1, x2, x3, . . . 〉

Block: function
[N → X ] → [N → Y ]

A block takes one or more streams as input and produces a stream as
output

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 7 / 47



Process networks

Data�ow

A data�ow diagram depicts a process network

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 8 / 47



Process networks

Data�ow

Behaviour: transmission of information (tokens) as messages between
processes (blocks) connected by channels.

Concurrency: each process �runs� independently.

Interactivity:

processes exchange information
the behaviour and output of an individual process depends on the input
messages
A process doesn't need to terminate: continuous exchange of
information

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 9 / 47



Process networks

Data�ow

Hierarchical composition (nesting): a process may be itself a process
network

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 10 / 47



Process networks

Data�ow

Hierarchy base:

General data�ow: no particular model
Process-oriented view: state-machines

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 11 / 47



State-transition systems

State-Transition systems

Limitations of DFAs and NFAs:

Finite state-space (not so bad)
Finite alphabet (not so bad)
No notion of rejection (but can be easily emulated)
Determinism (not for NFAs; Whether this is a limitation depends on
the problem.)
Termination: model of computation is, receive a full string (=stream)
of input and �nish producing one output (accept/reject)
No notion of interaction between automata

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 12 / 47



State-transition systems

State-Transition systems

Automata:

input: transition labels are input events

output: accept/reject states

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 13 / 47



State-transition systems

State-Transition systems

Transducers: a �nite state machine that generates an output for each
transition

Moore machines
Mealy machines

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 14 / 47



State-transition systems

State-Transition systems

Moore machines: transition labels are input events, states have
outputs

(Q, q0,X ,Y , δ, λ)

Q: A set of states
q0 ∈ Q: a chosen initial state
X : an input alphabet
Y : an output alphabet
δ : Q × X → Q: a transition function
λ : Q → Y : an output function

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 15 / 47



State-transition systems

State-Transition systems

Moore machines: transition labels are input events, states have
outputs

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 16 / 47



State-transition systems

State-Transition systems

Mealy machines: transition labels are input/output pairs

(Q, q0,X ,Y , δ, λ)

Q: A set of states
q0 ∈ Q: a chosen initial state
X : an input alphabet
Y : an output alphabet
δ : Q × X → Q: a transition function
λ : Q × X → Y : an output function

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 17 / 47



State-transition systems

State-Transition systems

Mealy machines: transition labels are input events, states have outputs

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 18 / 47



State-transition systems

State-Transition systems

A transducer produces an output for every possible input

Labelled Transition Systems (LTS)

No restriction on when output is produced
No restriction on �niteness of state-space or alphabet
Allows rejection (abscence of transitions)
Allows non-determinism

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 19 / 47



State-transition systems

State-Transition systems

An LTS is a tuple
(Q,A, δ)

Q: set of states
A: set of labels
δ ⊆ Q × A× Q: transition relation

Write
P

a−→ P ′

for
(P, a,P ′) ∈ δ

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 20 / 47



State-transition systems

State-Transition systems

Labels may be interpreted as

input events
actions

Actions:

observable:

input actions: ?a

output actions: !b

internal: int

Process oriented view: labels are actions

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 21 / 47



CCS

A language for state-transition systems

Describing state-transition systems:

Diagrams
Mathematical notation
As a formal language

Some formal languages used to describe networks of state transition
systems:

CCS: Calculus of Communicating Systems
CSP: Concurrent/Communicating Sequential Processes

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 22 / 47



CCS

A language for state-transition systems

Nil: a state that has no outgoing transitions (deadlock/termination)

0

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 23 / 47



CCS

A language for state-transition systems

Pre�x (action)

P = a→ Q

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 24 / 47



CCS

A language for state-transition systems

Pre�x (action)

P = a→ Q

Q = b → 0

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 25 / 47



CCS

A language for state-transition systems

Pre�x (action)

P = a→ b → 0

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 26 / 47



CCS

A language for state-transition systems

Loops: recursion

P = a→ P

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 27 / 47



CCS

A language for state-transition systems

Loops: recursion

P = a→ Q

Q = b → P

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 28 / 47



CCS

A language for state-transition systems

Choice

P = a→ Q + b → R

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 29 / 47



CCS

A language for state-transition systems

Choice: non-determinism

P = a→ Q + a→ R

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 30 / 47



CCS

A language for state-transition systems

External choice: the environment decides

P =?a→ Q +?b → R

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 31 / 47



CCS

A language for state-transition systems

Internal choice: the system decides

P =!a→ Q + !b → R

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 32 / 47



CCS

A language for state-transition systems

Internal choice: the system decides

P =!a→ Q +?b → R

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 33 / 47



CCS

A language for state-transition systems

Internal choice: the system decides

P = int → Q +?b → R

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 34 / 47



CCS

A language for state-transition systems

Process networks

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 35 / 47



CCS

A language for state-transition systems

Parallel composition

P = Q ‖ R

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 36 / 47



CCS

A language for state-transition systems

De�ning processes with ports

P(a, b, c) = ...a...b...c...

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 37 / 47



CCS

A language for state-transition systems

Pre�x (output actions)

P(a) = a!x → Q

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 38 / 47



CCS

A language for state-transition systems

Pre�x (input actions)

P(a) = a?x → Q

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 39 / 47



CCS

A language for state-transition systems

Example: data relay

B(a, b) = a?x → b!x → 0

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 40 / 47



CCS

A language for state-transition systems

Example: single cell-bu�er

B(a, b) = a?x → b!x → B(a, b)

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 41 / 47



CCS

A language for state-transition systems

Channels

νa.P

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 42 / 47



CCS

A language for state-transition systems

Connecting processes

P(a) = ...a...

C (b) = ...b...

S = νz .(P(z) ‖ C (z))

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 43 / 47



CCS

A language for state-transition systems

Connecting processes

P(a) = ...a...

C (b) = ...b...

S = νz .(P(z) ‖ C (z) ‖ C (z))

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 44 / 47



CCS

A language for state-transition systems

Communication: synchronous vs asynchronous

P(a) = a!2→ print.done → 0

C (b) = b?x → print.x → 0

S = νz .(P(z) ‖ C (z))

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 45 / 47



CCS

A language for state-transition systems

Communication and nondeterminism

P(a) = a!2→ print.done → 0

C (b) = b?x → print.x → 0

S = νz .(P(z) ‖ C (z) ‖ C (z))

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 46 / 47



CCS

Ernesto Posse (MSDL�SOCS�McGill) Process-oriented modelling September 25, 2006 47 / 47


