DEVS Flattening
with muModelica and
pyDEVS

Jesse Doherty



Outline

* |ntroduction
 Motivations
 Tools

* Solution
 Conclusion



I Introduction

e DEVS
I - Atomic

(S,ta,8,,,,X,6,4,Y,A)

- Coupled

<Xse1f'Yself'DI{Mi}I{Ii}l{Zij};SeleCt>



I Introduction
e DEVS
I - Closed under coupling, through flattening
— Closure Procedure

<Xself'YselflDI{Mi}l{Ii}I{Zij}lseleCt> ><S Ital6intIXI6extlYlA>



I Motivation

I * WWhy do we use a coupled DEVS solver?



I Motivation

- Solver can be parallelized

- Solving the original system seems more
satisfying

- Solving through flattening still requires an atomic
solver

I * WWhy do we use a coupled DEVS solver?



I Motivation

I » Why would we want to flatten?



Motivation

» Why would we want to flatten?
- Static analysis

- Optimizations

- Tools become less complex



How?

¢ Seems simple
- take some cross products
- find some minimums
- keep track of some time
- forward some transition functions



Problems

e Questions come up quickly

now do we specify DEVS
now do we represent them
now do we transform them

how do we solve them



Tools

Modelica
muModelica
Devs in Modelica

Python Devs



I Modelica

» Object oriented model description language
I - not a programming language

* Highly structured

» Suitable for high-level model description



I muModelica

* Modelica compiler originally intended to
I target octave code

* Written in python

» Extendable

* Provides an AST of input code



I DEVS in Modelica

DEVS components
- Events

- State

- Port

- Atomic DEVS

- Coupled DEVS

I » Set of Modelica classes used to represent

* More structured than pydevs representation



I DEVS in Modelica

» Functionality added to muModelica to DEVS
I semantics and output pydevs code

» Some restrictions
- submodels must be explicitly listed
- atomic DEVS' states are expected to have a
sequential state component (though not
enforced)



| PyDEVS

I * All seen before



I Ildeal Solution

* For each coupled DEVS

I — produce a new atomic DEVS with
» state equivalent to a combination of all sub model
states
e transition, output and ta functions are an inlining of
component functions

- discard original AST and produce AST for just
the new atomic DEVS



I Initial Solution

* Create new flattened versions of coupled
models

» State of these flattened versions would
consist of a list of instances of component
models, and an elapsed time for each

* For each function, perform appropriate logic
and forward the function to the needed
component models

I » Maintain original AST structure



I Current Solution

models, also produce python code for

* While producing python code for modelica
I flattened DEVS models

* Benefits:
- Simpler to implement, direct access to python
language
 Drawbacks:
- loose access to structure of flattened model



Encountered Problems

 muModelica AST can be clumsy when
dealing with DEVS structure

* Need a useful way of representing combined
states, for use in analysis



I Conclusion

 Flattening might be useful

I * More specialized tools for dealing with DEVS
structure would be needed produce useful
analysis



