
DEVS Flattening
with muModelica and

pyDEVS

Jesse Doherty

Outline

● Introduction
● Motivations
● Tools
● Solution
● Conclusion

● DEVS
– Atomic

– Coupled

Introduction

〈S ,ta, int , X ,ext ,Y ,〉

〈 X self ,Y self , D , {M i}, {I i}, {Zij}, select 〉

Introduction

● DEVS
– Closed under coupling, through flattening
– Closure Procedure

〈S ,ta , int , X ,ext ,Y ,〉〈 X self ,Y self , D , {M i}, {I i}, {Z ij}, select 〉

Motivation

● Why do we use a coupled DEVS solver?

Motivation

● Why do we use a coupled DEVS solver?
– Solver can be parallelized
– Solving the original system seems more

satisfying
– Solving through flattening still requires an atomic

solver

Motivation

● Why would we want to flatten?

Motivation

● Why would we want to flatten?
– Static analysis

– Optimizations

– Tools become less complex

How?

● Seems simple
– take some cross products
– find some minimums
– keep track of some time
– forward some transition functions

Problems

● Questions come up quickly
– how do we specify DEVS
– how do we represent them
– how do we transform them
– how do we solve them

Tools

● Modelica

● muModelica

● Devs in Modelica

● Python Devs

Modelica

● Object oriented model description language
– not a programming language

● Highly structured

● Suitable for high-level model description

muModelica

● Modelica compiler originally intended to
target octave code

● Written in python

● Extendable

● Provides an AST of input code

DEVS in Modelica

● Set of Modelica classes used to represent
DEVS components
– Events
– State
– Port
– Atomic DEVS
– Coupled DEVS

● More structured than pydevs representation

DEVS in Modelica

● Functionality added to muModelica to DEVS
semantics and output pydevs code

● Some restrictions
– submodels must be explicitly listed
– atomic DEVS' states are expected to have a

sequential state component (though not
enforced)

PyDEVS

● All seen before

Ideal Solution

● For each coupled DEVS
– produce a new atomic DEVS with

● state equivalent to a combination of all sub model
states

● transition, output and ta functions are an inlining of
component functions

– discard original AST and produce AST for just
the new atomic DEVS

Initial Solution

● Maintain original AST structure
● Create new flattened versions of coupled

models
● State of these flattened versions would

consist of a list of instances of component
models, and an elapsed time for each

● For each function, perform appropriate logic
and forward the function to the needed
component models

Current Solution

● While producing python code for modelica
models, also produce python code for
flattened DEVS models

● Benefits:
– Simpler to implement, direct access to python

language
● Drawbacks:

– loose access to structure of flattened model

Encountered Problems

● muModelica AST can be clumsy when
dealing with DEVS structure

● Need a useful way of representing combined
states, for use in analysis

Conclusion

● Flattening might be useful

● More specialized tools for dealing with DEVS
structure would be needed produce useful
analysis

