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Introduction

I Computational modeling is a powerful tool for
understanding disease outbreaks.

I Accurate models can be used to predict the implication of
public health measures (i.e., forcast how effective a vaccine
will be).



A real world scenario

During the 2009 H1N1 flu pandemic, researchers used models
to allocate resources and to design effective public health
strategies.



H1N1 2009 pandemic in numbers

In the United States, CDC12 estimated
I Between 43 million and 89 million cases of H1N1.
I Between 195,000 and 403,000 H1N1-related

hospitalizations.
I Between 8,870 and 18,300 2009 H1N1-related deaths

1Centers for Disease Control and Prevention. Updated CDC Estimates of
2009 H1N1 Influenza Cases, Hospitalizations and Deaths in the United States,
April 2009—April 10, 2010, 2010. [Online; accessed 6-May-2012]

2Centers for Disease Control and Prevention. Estimates of the Prevalence
of Pandemic (H1N1) 2009, United States, April–July 2009, 2009. [Online;
accessed 6-May-2012]



H1N1 2009 profile

I Fatality rates between 0.01 and 0.03%. Higher risks for
people under 50. 3

I Basic reproduction number R0 estimated to be 1.75. 4 R0 is
the average number of secondary cases produced by a
primary case. Diseases with R0 > 0 can spread across a
population.

I Infectious period usually last 4–6 days.
I 33% of the infectious individuals are asymptomatic.

3L.J. Donaldson, P.D. Rutter, B.M. Ellis, F.E.C. Greaves, O.T. Mytton, R.G.
Pebody, and I.E. Yardley. Mortality from pandemic A/H1N1 2009 influenza
in England: public health surveillance study. BMJ: British Medical Journal, 339,
2009

4D. Balcan, H. Hu, B. Goncalves, P. Bajardi, C. Poletto, J. Ramasco,
D. Paolotti, N. Perra, M. Tizzoni, W. Broeck, et al. Seasonal transmission
potential and activity peaks of the new influenza A (H1N1): a Monte Carlo
likelihood analysis based on human mobility. BMC medicine, 7(1):45, 2009



H1N1 profile table

Table: Best Estimates of the epidemiological parameters

Parameter Best Estimate Interval estimate
R0 1.75 1.64 to 1.88
ν−1 2.5 1.1 to 4.0
α−1 1.1 1.1 to 2.5



Modeling an epidemic

Many parameters influence how a disease spreads.
I Sex, age, education distributions
I Transportation networks
I Vaccination campaigns, quarantines, and other public

health measures
I Evolution
I Seasonal forcing
I Social structures
I etc.



Compartmental models in epidemiology

The SIR model5 is a good and simple model for many
infectious diseases.

I Represents a population in 3 distinct compartments at a
particular time: susceptibles S(t), infectious I(t), and
recovered R(t).

I Rate of transitions of a population is modeled by
differential equations.

5R.M. Anderson, R.M. May, et al. Population biology of infectious
diseases: Part i. Nature, 280(5721):361, 1979



Basic SIR model

Susceptible Infectous Recovered



Basic SIR model

dS
dt

= −βIS

dI
dt

= βIS− νI

dR
dt

= νI

where the basic reproduction number R0 is defined to be

R0 =
β

ν



SIR model characteristics

I Continuous time model.
I Deterministic.
I Computationally cheap.
I Do not account for spatial distributions, assume uniform

diffusion.



SIR Results
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Agent-based modeling

I Model a system as a collection of autonomous
decision-making entities called agents.6

I Agents may be capable of sophisticated behaviors.
I Capture emergent phenomena.
I Natural description of a system.
I Flexible.

6E. Bonabeau. Agent-based modeling: Methods and techniques for
simulating human systems. Proceedings of the National Academy of Sciences of
the United States of America, 99(Suppl 3):7280, 2002



Agent-based model characteristics

Typically,
I Discrete time model.
I Stochastic.
I Account for spatial distributions.
I Computationally expensive.



Simple agent-based model of an infectious disease

I We define the state of an agent as its position and velocity
in the world and its compartment (i.e., susceptible,
infectious, recovered).

I World is a continous 2d space
I Susceptible agents become infected if they move within the

radius r of another infected agent.
I Infected agents recovers with probability γ.



Goal
Find a correspondence between the SIR model and this
agent-based model.



Model correspondence

I This will allow us to interchange models as necessary.
I In practice, the parameters space of the agent-based model

is difficult to define (e.g., how the rules of the agents fit
in?).

I Or may not even exist, how do we map a deterministic
world onto a stochastic world?



Simple parametrizations of the models

I For the agent-based model, we ignored the motion of the
agents. So we only have the radius r and recovery
probability γ as parameters.

I For the SIR model, we used infection rate β and recovery
rate ν as parameters.



Finding the parameters

We found trivially that ν = γ. But, finding β was harder.
Measuring it experimentally was not really an option.



Finding the infection rate

What is the probability a point fall in the black region?



Finding the infection rate (1)

Assume an agent has a probability a
A of being in the infectious

area a of some agent in a world of area A, then the probability
of not being in it is A−a

A .



Finding the infection rate (2)

So the probability of not being covered by k independent
infectious agents is (

A− a
A

)k



Finding the infection rate (3)

And the probability of being covered by at least one of them is

1−
(

A− a
A

)k



Finding the infection rate (4)

Our model, we assume A = 1 and we have a = πr2. Let St be
the number of susceptibles and It be the number of infected at
time t, then the expected number of infected at time t + 1 is

It+1 = It + St(1− (1− πr2)It)



Finding the infection rate (5)

We took the Taylor expansion and made some resonable
approximations to find

It+1 ≈ It − ln(1− πr2)ItSt

Therefore,
β ≈ − ln(1− πr2)



Comparison of infection rates with r = 0.001
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Result with r = 0.01



Limits of our simple analysis

I Need PDEs and differential geometry to model forest fire
dynamics analytically.

∂φ

∂t
= F‖∇φ‖

I Show that very complex behaviours emergent even simple
rules.



Conclusion

I Output of the system depends on the initial conditions.
I Limited forcasting capabilities for both models.
I Correspondence not obvious between agent-based model

and populations.



Questions?


