
Utilizing Graph Rewriting for Offline Narrative

Generation

Ben Kybartas

260477933, McGill University, Montreal, Quebec

Abstract

In this paper we present a system which uses graph rewriting techniques
to create interesting and unique narratives for use within a video game envi-
ronment. The system uses a graph containing an abstract representation of
the game world that consists of entities and relations between entities. By
discovering specific patterns within this graph, a narrative skeleton is created.
From this skeleton, potential narrative ”twists” are found by again searching
for specific patterns within the game world. The narrative, in turn, causes
changes within the game world. The final system creates a dynamic game
environment which inspires narratives and in turn reacts to these narratives
accordingly resulting in a unique and ever changing game experience.

Keywords: Narrative Generation, Procedural Content Generation, Graph
Rewriting

1. Introduction

Procedurally-generated content (PCG) has long since been a valuable
area of research for the video games industry as it allows for the creation of
game content without the intervention of game designers. While the realm
of potential research areas for PCG in computer games is vast, one area of
particular interest is that of narrative generation.

Narratives, being particularly popular in role-playing games, immerse
the player within worlds where they need to feel that their actions have an
effect on, and are motivated by, the game world around them. In this sense,

Email address: ben.kybartas@mail.mcgill.ca (Ben Kybartas)

Preprint submitted to COMP-522 Final Project April 26, 2012



narrative is used to give the player a sense of worth in the world in which
they inhabit. For proper generation to occur, the narrative must be closely
tied to events and relations within the virtual world in which the game takes
place.

We will first present related work in 2. Following this, in 3, we will present
the formal model which we are using for our system. In 4 we will discuss the
implementation of the system and show a simple example using the system.
Next, in 5 we comment on several features of the system. Lastly we present
conclusions and future work in 6 and 7 respectively.

2. Related Work

The fundamental design of the system revolves around having two graphs,
one of which represents the Game World and the second represents the Nar-
rative itself. The game world influences the creation and development of
the narrative, and the actions taken in the narrative modify the entities and
relations in the game world. This concept is similar to several approaches
of cognitive modeling, such as those used in the ACT-R system present in
Stewart and West (2006). In ACT-R, the system uses an abstract represen-
tation of the brain, which is composed of objects and relations, and actions
which occur as reactions to the current state of the brain. For our system,
the brain will be our game world graph, and the actions will be the events
in the narrative we are generating.

Focusing instead on the existing work in the field of narrative generation,
there have been some notable examples of narrative generation techniques
based on the current state of the game world. The game ”Prom Week” from
McCoy et al. (2010), utilizes social interactions between characters in order
to create emergent and online narrative situations. The game is essentially
oriented around using social interations to achieve goals within the game,
such as becoming the king/queen of prom, gaining friends or enemies, etc.

Chang and Soo (2009) presented a method of narrative generation which
uses the idea of planning within a game environment in order to generate
narratives. In the paper beliefs and motivations are used to guide characters
towards goals, where the actions taken by a specific character may influence
the beliefs and motivations of other characters.

From the commercial perspective, the recently released game ”The Elder
Scrolls: Skyrim”, from Bethesda Softworks, uses a basic form of narrative
generation as a means of generating infinite quests for players, Lenhardt

2



(2012). The system, dubbed ”Radiant Story”, attempts to generate quests
which guide players to locations they haven’t previously visited, encouraging
exploration as well as narrative involvement.

3. Modelling

3.1. Concept

For this system, we will be using two graphs. The first graph will contain
the state of the game world, which will be modeled as a series of entities and
the relations between these entities. The second will be our narrative, which
is modeled as a series of events and the links between these events.

The system will utilize both these graphs, using the game world as a
means for locating potential stories using a set of narrative generation rules,
which will then update our narrative. The events which occur within the
narrative will, in turn, cause changes to the entities within our game world
and to the relations between our entities.

3.2. Game World Graph

3.2.1. Entity

Our game world graph is composed of entities and relations. An entity is
defined as follows:

e =< n,A,Rin, Rout >

Where n represents a unique identifier for our entity. For example, for an
non-playable character (npc), the unique identifier would most likely be the
name of the npc.

A represents a set of attributes. An attribute consists of both an identifier
and a value. Taking the example of an npc, If we want to denote the jobs of
npcs in our game environment then a sample attribute would be rank, knight
for a knight and rank, king for a king. Therefore a sample entity would be
the following:

< ”Arthur”, {”rank” : ”king”, ”alive” : True}, [], [] >

Note that we choose to denote our attribute set in this fashion since in
our implementation we use dictionaries for our attributes, and above is how
a dictionary is declared in python.

Lastly, Rin and Rout are sets which define the incoming and outgoing
relations for this entity.

3



3.2.2. Relation

A relation in our implementation is defined as follows:

r =< a, efrom, eto >

Here, a represents a single attribute which defines our relation. The at-
tribute once again consists of an identifier and a value. In this case, these
roughly translate to relation and reason. For example. If the knight is friends
with the king because knight’s are loyal to the king then the relation connect-
ing the knight to the king would be given the attribute {”friends”:”rank”}
. This translates to: the knight is friends with the king because of the rank
of the king. Note that rank is the same identifier we used to describe one
attribute of the king in the above example. This means we can further state
that the knight is friends with the king because he is the king.

efrom and eto denote the outgoing entity and incoming entity respectively.
For our above example, the efrom would be the knight and the eto would be
the king, since we are describing the relation of the knight with respect to
the king. The relations are not two way, the king may not be friends with
the knight, or may be friends for a different reason, hence why our relations
are one way only.

3.2.3. Game World Graph

Using the above two definitions our game world graph can simply be
defined as follows:

G =< E,R >

Where E represents the set of all our entities and R represents the set of
all of our relations.

3.3. Narrative Graph

3.3.1. Event

Our narrative graph is very similar in definition to the Game World graph
as it involves entities and relations. However for our narrative graph, our
entities are technically narrative events. An event is defined as follows:

x =< n,A, Yin, Yout, e >

n, and A are the same as above, except in this case they are used to
describe the name and attributes of an event in particular. Yin and Yout once

4



again refer to the incoming and outgoing relations for our narrative graph.
To differentiate, here we will call relations links, in order to differentiate them
from the relations described above.

e here refers to a target entity, since each event in the narrative is related
to a specific entity within our game world. For instance, if our narrative event
is to murder an npc, the npc to be murdered would be our target entity.

3.3.2. Link

Links in our narrative graph are defined as follows:

y =< xfrom, xto >

For a link, we only need to know from which event we have come and to
which event we are headed. These are labeled xfrom and xto respectively.

3.3.3. Narrative Graph

One again, we can simply define our narrative graph using the above two
rules as follows:

N =< X, Y >

Where X represents the set of all our events and Y represents the set of
all our links.

3.4. Graph Rewrite Rules

3.4.1. Narrative Generation Rules

Our system is further defined by a set of rewrite rules, used both for
narrative generation and for narrative rewriting. For a narrative generation
rule, we use the following definition:

u =< Gcond, Goutcome, Noutcome >

Where Gcond represents our game world condition, ie. we need Gcond to
be a subset of our main game world G. We use the subgraph isomorphism
algorithm presented by Ullman (1976) for testing this condition. If the con-
dition is met, then we generate the narrative given in Noutcome. Additionally,
we link social outcomes, defined as Goutcome to certain events in the narra-
tive structure. For instance, if a character is murdered at one event in the
narrative, then we will need an update rule which sets the character to be
dead and update their relations accordingly (such as making all their friends
and lovers hate the murderer).

5



3.4.2. Narrative Rewriting Rules

A narrative rewriting rule is declared as follows:

v =< Gcond, Ncond, Goutcome, Noutcome >

Similarly to the narrative generation rule, we first have a game world
condition, Gcond, that must be met in order for our rewriting to occur. How-
ever for a rewrite rule, we also have a Ncond, which is the condition that the
narrative must meet in order for the rewrite rule to occur. Here, we again
have two outcomes, the first being the changes to the game world graph,
Goutcome, and the second being the changes to the narrative graph, Noutcome.

3.5. System

Putting together all that we have above, we can define our overall system
as follows:

sys =< G,N,U, V >

Where G is our game world graph, N is our narrative graph, U is the
set of all narrative generation rules, and V is the set of all narrative rewrite
rules.

4. Implementation

The system was implemented using Python, following the above defini-
tions for each individual component. At the start, we only need to define our
main social graph. A sample social graph is shown below:

Figure 1: Our Starting Game World

6



In this example we have four entities, and two relations. Note that at the
start we have left the player as neutral meaning they have no relation to any
of the npcs in our game world at the moment. This allows us to simulate a
fresh world, in which the player has not performed any actions and made no
changes to the game world. In order to develop our narrative skeleton, we
search through our rule set and attempt to find a matching rule. For this
example, we are only assuming one rule, in which the player is asked by a
character to kill their enemy. The rule is represented as follows:

Figure 2: A Sample Narrative Generation Rule

On the left-hand side, we have the condition for our rule, and on the right-
hand side we have the result. In this case, the result will be our narrative
skeleton. In checking this rule, the system will notice that Charles has a hate
relation to Bob. Note that using N/A as a reason means that we do not care
why one character hates another, the rule is satisfied simply if there exists
any hate relation. The scheduler then takes our two target npcs, Charles
and Bob, and creates our narrative skeleton, shown below:

7



Figure 3: Our starting narrative skeleton, notice how the target gives the name of the
target entity for each event (ex. for Kill Victim, the target you are killing is Bob)

8



The next step of the generation stage is to simulate execution of the
narrative, using each event as a discrete unit of time, by moving from event
to event and checking if there are any game world modifications at any event.
In this case, at the ”Kill Victim” stage, we will need to set the alive attribute
of our victim to be False. However, on top of this, the scheduler is also
checking if there are any cases where we can apply a narrative rewriting rule.
Again, we assume only one rewrite rule, which is defined as follows:

Figure 4: An example narrative rewrite rule

Here we have both a game world condition and a narrative condition.
When the simulator reaches the ”Kill Victim” stage, it will check if there are
any relations in the graph where there is a character who has a love relation
to the victim of the murder. For our game world, it will discover that Alice
loves Bob. The system will then update the narrative to contain this new
twist, where the player must additionally kill the lover of their victim as well
as the victim themselves. Since this is our only rewrite rule, the system will
finish simulating the narrative. The resulting narrative with the new twist
appears as follows:

9



Figure 5: The final narrative after applying the narrative rewrite rule

As mentioned before, while the narrative is simulating, it is also making
updates to the game world graph. For this story we are murdering two
characters. The updates to the graph are also rules. For a murder, we
update the graph based off the relations of the murdered character. If the
character was friends with or loved by any other characters, then they develop
a hate relation towards the murderer. If the character was hated by any
other characters, then they develop a friends relation towards the murderer.
Additionally, the murdered character loses all outgoing relations, since the
dead character’s relations to other entities no longer matters. The final graph
graph is shown here:

10



Figure 6: The Final Game World given our narrative. Note that the character is no longer
neutral (ie. Charles now has a relation to the player)

We can see that both Alice and Bob were killed throughout the duration
of our narrative. We can also see that Charles now has a friendship relation
to the player, and the reason for this is that the player has killed Bob, whom
Charles hated. For comparison, if simulate the narrative except remove the
Ambush scenario, where the player must also kill Alice, we get instead the
following game world graph:

Figure 7: The Final Game World if Alice remains alive. Note that both characters now
have conflicting views of the player due to their previous relation to Bob

In this instance, We see that Alice now has a hates relation to the player,
since she has a love relation to Bob, whom we have previously murdered.

5. Comments

The system we presented uses a very simplified view of relations between
entities within the game world, such as the relations between npcs being

11



modeled as simple relation/reason pairs. The advantage of this is that we
want to use a minimal vocabulary to define our game world. If relations are
too specific, then we reduce the number of matching subgraphs (as well as
the likelihood of finding any matching subgraph). For example, the relation-
ship set friend, neutral, enemy means that any npc relation falls into one
of these three categories. Thus, if we have a rewrite rule which requires a
friend relation, then we are likely to get a result. However, using a set that
small may be inadequate for describing the world which we want to create.
Therefore, there is a trade-off between the size of the relationship set and
the number of subgraphs found for a given rewrite rule.

This system differs from the previously mentioned work in that it aims
to generalize the process of defining a game world and defining a narrative
and to make it simple enough that a game designer would easily be able to
work with it if they wished to use such a system for their game. Likewise,
the tool can be extremely specific, as mentioned above if the designer wished
for very specific relations to exist, or for very specific conditions to be used
when creating a narrative, then these could be added easily.

6. Conclusions

In this paper we presented a means of generating narratives for games by
applying graph rewriting techniques. We used a graph representation of our
game world based off entities within the world and their relations between
each other. We searched for specific entity/relation subgraphs within this
world and used those to create a narrative skeleton. We then simulated this
narrative, rewriting parts of the narrative to create a more dynamic story.
The result gives us our game narrative as well as an updated game world
graph. The resulting system is very easy to understand visually and could
easily be understood by a designer aiming to use this system to create their
own narrative generation system.

7. Future Work

7.1. Online Narrative Generation

The system implemented first created a narrative skeleton and then sim-
ulated it in order to search for narrative twists. The result of this was our
narrative. This entire process was run offline, meaning we are expected to

12



generate the entire narrative before presenting it to the character. An al-
ternative to this system is to use an online generation system. For this
system, we would immediately present the narrative to the player. As the
player worked their way through the narrative, the system would dynami-
cally check for any potential narrative rewrites, and then present them when
necessary. Using this system would reduce the generation time as we would
not need to perform a narrative simulation and would also present a more
dynamic experience to the user, where changes in the game world would pro-
duce immediate reactions in the narrative, as opposed to having all events
predetermined.

7.2. Branching Narrative

Another interesting area for narrative generation is the idea of creating
branching narratives, where there are different paths throughout the narra-
tive. Some of these paths may lead to completely different results and other
paths may simply be alternative methods of achieving the same goal. This
system would work both as an offline or online system. For an offline system,
we would need to simulate all possible paths through the narrative in order
to create a large narrative containing all possible paths and outcomes. For
an online system, we would simply need to continue to generate new nar-
rative segments depending on whatever choices the player makes. Having a
branching narrative again gives more control of how the story unfolds to the
player, resulting in a more engaging and personal experience for each player.

8. References

Chang, H.-M., Soo, V.-W., September 2009. Planning-Based Narrative Gen-
eration in Simulated Game Universes. IEEE Transactions on Computa-
tional Intellignence and AI in Games 1 (3), 200–213.

Lenhardt, H., January 2012. Bethesdas Nesmith reflects on the difficult birth
of Skyrims Radiant Story system. Accessed on April 2012.
URL http://venturebeat.com/2012/01/27/bethesdas-nesmith-refl

ects-on-the-difficult-birth-of-skyrims-radiant-story-system/

McCoy, J., Treanor, M., Samuel, B., Tearse, B., Mateas, M., Wardrip-Fruin,
N., June 2010. Authoring Game-based Interactive Narrative using Social

13



Games and Comme il Faut. In: Proceedings of the 4th International Con-
ference and Festival of the Electronic Literature Organization: Archive
and Innovate. Providence, Rhode Island, USA.

Stewart, T. C., West, R. L., 2006. Deconstructing ACT-R. In: Proceedings
of the Seventh International Conference on Cognitive Modeling. Trieste,
Italy, pp. 298–303.

Ullman, J. R., January 1976. An Algorithm for Subgraph Isomorphism. Jour-
nal of the Association for Computing Machinery 23 (1), 31–42.

14


