## Statecharts aka Harel Charts

## Visual Modelling

1. Higraph formalism
2. Statechart formalism (combines Higraphs and State Automata)

Diverse applications.
In particular: concurrent systems behaviour

## Higraphs: Visualising Information

- complex
- non-quantitative, structural
- topological, not geometrical
- Euler
- Venn diagrams (Jordan curve: inside/outside): enclosure, intersection
- graphs (nodes, edges: binary relation); hypergraphs


## Venn diagrams, Euler circles



- topological notions (syntax):
enclosure, exclusion, intersection
- Used to represent (denote) mathematical set operations: union, difference, intersection


## Hypergraphs


a graph

a hypergraph

- topological notion (syntax): connectedness
- Used to represent (denote) relations between sets.
- Hyperedges: non longer binary relation $(\subseteq X \times X)$ : $\subseteq 2^{X}$ (undirected),$\subseteq 2^{X} \times 2^{X}$ (directed) .


## Higraphs: combining graphs and Venn diagrams

- sets + cartesian product
- hypergraphs

Blobs: set inclusion, not membership


## Unique Blobs (atomic sets, no intersection)



E

- atomic blobs are identifiable sets
- other blobs are union of enclosed sets (e.g., $K=L \cup M \cup N \cup O \cup P$ )
- empty space meaningless, identify intersection (e.g., $N=K \cap W$ )


## Unordered Cartesian Product: Orthogonal Components

 A
$\square$

$$
K=G \times H=H \times G=(L \cup M) \times(N \cup O \cup P)
$$

## Meaningless syntactic constructs



## Simple Higraph



## Induced Acyclic Graph (blob/orth comp alternation)



## Adding (hyper) edges



- hyperedges
- attach to contour of any blob
- inter-level possible (e.g., denote global variables binding)


## Clique Example



## Clique: fully connected semantics



## Entity Relationship Diagram (is-a)



## Higraph version of E-R diagram



## Extending the E-R diagram



## Formally (syntax)

A higraph $H$ is a quadruple

$$
H=(B, E, \sigma, \pi)
$$

$B$ : finite set of all unique blobs
$E$ : set of hyperedges

$$
\subseteq X \times X, \quad \subseteq 2^{X}, \quad \subseteq 2^{X} \times 2^{X}
$$

The subblob (direct descendants) function $\sigma$

$$
\begin{gathered}
\sigma: B \rightarrow 2^{B} \\
\sigma^{0}(x)=\{x\}, \sigma^{i+1}=\bigcup_{y \in \sigma^{i}(x)} \sigma(y), \sigma^{+}(x)=\bigcup_{i=1}^{+\infty} \sigma^{i}(x)
\end{gathered}
$$

Subblobs ${ }^{+}$cycle free

$$
x \notin \sigma^{+}(x)
$$

The partitioning function $\pi$ associates equivalence relationship with $x$

$$
\pi: B \rightarrow 2^{B \times B}
$$

Equivalence classes $\pi_{i}$ are orthogonal components of $x$

$$
\pi_{1}(x), \pi_{2}(x), \ldots, \pi_{k_{x}}(x)
$$

$k_{x}=1$ means a single orthogonal component (no partitioning)

Blobs in different orthogonal components of $x$ are disjoint

$$
\forall y, z \in \sigma(x): \sigma^{+}(y) \cap \sigma^{+}(z)=\emptyset
$$

unless in the same equivalence class

## Simple Higraph



## Induced Orthogonal Components

$$
\begin{gathered}
B=\{A, B, C, D, E, F, C, G, H, I, J, K, L, M\} \\
E=\{(I, H),(B, J),(L, C)\} \\
\rho(A)=\{B, C, H, J\}, \rho(G)=\{H, I\}, \rho(B)=\{D, E\}, \rho(C)=\{E, F\}, \\
\rho(J)=\{K, L, M\} \\
\rho(D)=\rho(E)=\rho(F)=\rho(H)=\rho(I)=\rho(K)=\rho(L)=\rho(M)=\emptyset \\
\pi(J)=\{(K, K),(K, L),(L, L),(L, K),(M, M)\}
\end{gathered}
$$

Induces equivalence classes $\pi_{1}(J)=\{K, L\}$ and $\pi_{2}(J)=\{M\}, \ldots$
These are the orthogonal components

## Higraph applications (add specific meaning)

1. E-R diagrams
2. data-flow diagrams (activity diagrams)
edges represent (flow of) data
3. inheritance
4. Statecharts

## Statecharts = <br> state diagrams + depth + orthogonality + broadcast

- Reactive Systems (event driven, react to internal and external stimuli)
- like Petri Nets, CSP, CCS, sequence diagrams, ...
- graphical but formal and rigourous for
- analysis
- code generation
- solve FSA problems:
- flat $\Rightarrow$ hierarchy $\Rightarrow$ re-use
- represent large number of transitions concisely
- represent large number of (product)states concisely
- sequential $\Rightarrow$ concurrent


## Depth (XOR), semantics through flattening



## Orthogonality (AND), semantics through flattening



## Broadcasting (output events)



## History States



## Stopwatch Example



## Extensions

- time: after(10s)
- guards: [OC in (C) ]
- parametrized events: ev (p1, p2)
- narrowcast: destination.ev(p1,p2), destination->ev (p1, p2)
- states vs. variables
- arrow: $R$, negative arrow: not $R$, absence of arrow: don't know
- don't know blobs
- Zoom outs (interface)

