
Comparing graphical DSL editors

AToM3 vs GMF & MetaEdit+

Nick Baetens

2

Outline

• Introduction

• MetaEdit+

 Specifications

 Workflow

• GMF

 Specifications

 Workflow

• Comparison

3

Introduction

• Commercial

• Written in Smalltalk

• Standalone

• Eclipse plug-in

• Depends on &
combines other
plug-ins

4

Outline

• Introduction

• MetaEdit+

 Specifications <=

 Workflow

• GMF

 Specifications

 Workflow

• Comparison

5

MetaEdit+

• Graph, Object, Port, Property, Relationship
and Role

• Graph: Top-level structure of meta-model

• Binding of objects, relationships, roles and
ports within graph = actual semantics

• Tools for each base type

6

MetaEdit+

7

MetaEdit+

• Information in instance models created with
the older version of the meta-model is not lost
when the new version is deployed

• Conservative approach

 If concept is removed

 Creation of new instances impossible

 Existing instances are not removed from models

 Generators will still produce working code from
old instances.

8

Outline

• Introduction

• MetaEdit+

 Specifications

 Workflow <=

• GMF

 Specifications

 Workflow

• Comparison

9

MetaEdit+ Workbench

10

MetaEdit+ Workbench

11

MetaEdit+ Workbench

12

MetaEdit+ Workbench

13

MetaEdit+ Workbench

14

MetaEdit+ Workbench

15

MetaEdit+ Modeler

16

MetaEdit+ Modeler

17

MetaEdit+ Workbench

18

Outline

• Introduction

• MetaEdit+

 Specifications

 Workflow

• GMF

 Specifications <=

 Workflow

• Comparison

19

GMF Specifications

• Based on Eclipse Modeling Framework (EMF) &
Graphical Editing Framework (GEF)

• EMF

 Core: Ecore => XML Metadata Interchange

 Edit: Adapter classes to view in JFace viewers

 Codegen: Ecore to Java

• GEF

 Rich graphical editors out of domain models

 No restrictions on underlying model

20

GMF Specifications

• GMF = bridge between EMF & GEF

• No more model independency of GEF:

 GMF only accepts EMF models

• 2 parts: extensions of EMF & GEF

 Runtime environment

 Generation framework

21

GMF Specifications

22

Outline

• Introduction

• MetaEdit+

 Specifications

 Workflow

• GMF

 Specifications

 Workflow <=

• Comparison

23

GMF Workflow

24

GMF Workflow

25

GMF Workflow

26

GMF Workflow

27

GMF Workflow

• Constraints:

 Object Constraint Language

 Language to define constraints on meta-models

 Use in mapping

28

Outline

• Introduction

• MetaEdit+

 Specifications

 Workflow

• GMF

 Specifications

 Workflow

• Comparison <=

29

Comparison

Feature Atom3 MetaEdit+ GMF

Multi-user

Multi-view

Update Cycle

Live Updating

GraphGrammar

Build Models

Rules

Simulation

Code gen

Symbol Editor

User-friendly

30

Multi-View

• Different way’s to look at the same (meta-)
model

• MetaEdit+

 Yes: diagram, matrix and text

• GMF

 No: only tree representation

• Atom3

 Possible

31

UpdateCycle

• Time to update the model when meta-model is
changed

• Consistency Model

• MetaEdit+ < Atom3 < GMF

32

LiveUpdating

• Meta-model changes are propagated to model
without restarting the tool / reopening the
model

• Atom3

 Need to reopen the model

• MetaEdit+

 Yes

• GMF

 Regenerate entire plug-in

 Sometimes model is corrupted

33

GraphGrammar

• Is it possible to define a graph grammar?

• Atom3

 Yes

• MetaEdit+

 ??

• GMF

 Yes, but some development should be done.

 Associate a builder with the project

34

GMF

35

GMF

• You will need:

 Create new kind of projects: ProjectNature

 Create a new builder to build the diagram

• Like in Java, the diagram will be updated
everytime you save.

36

Build models

• Can we use the same tool to build models and
meta-models?

• Atom3 / MetaEdit+

 Yes

• GMF

 Build meta-models in Eclipse + GMF

 Generate new plug-in

 Build models in Eclipse + Plug-in

37

Simulation

• MetaEdit+ and Atom3

 Yes, program through API

 Changes are reflected live in the model

• Atom3

 Offers debug window

• GMF

 Possible, needs some coding

 Models can not be accessed directly

38

Transformation Rules

• Atom3

 Yes, even visual

• MetaEdit+ & GMF

 Possible, but needs coding

 Through API, develop class for each rule

 Not visual

39

User Friendly

• Subjective

• MetaEdit+

 Different tools are sometimes confusing

 Information is spread

• GMF

 Many wizards are provided

 Not well documented

• Atom3

 Many control combinations

40

Comparison

Feature Atom3 MetaEdit+ GMF

Multi-user

Multi-view

Update Cycle 2 1 3

Live Updating

GraphGrammar

Build Models

Rules

Simulation

Code gen

Symbol Editor

User-friendly

6,5/11 4/11 8,5/11

41

Conclusion

• Industrial Environments:

 Stability

 Features need to work out of the box

 MetaEdit+

• Research Environments:

 Preferably no licenses

 Make choice based on goals and habits

