
Comparing graphical DSL editors: AToM3, GMF,

MetaEdit+

Nick Baetens

University of Antwerp
Middelheimlaan 1
B-2020 Antwerp

Belgium

Abstract

In this paper we will discuss and compare graphical DSL editors GMF and
MetaEdit+ to AToM3. We assume that the reader is familiar with the latter
as its workflow and architecture will not be discussed here. For the compar-
ison itself we will use features as multi-view, multi-user, the ability to use
operational semantics, etc.

Keywords: AToM3, GMF, MetaEdit+, comparison, architecture, workflow

1. Introduction

Domain-specific modeling (DSM) is a software engineering methodology
for designing and developing systems, such as computer software. It involves
systematic use of a graphical domain-specific language (DSL) to represent
the various facets of a system dedicated to a particular problem domain,
a particular problem representation technique, and/or a particular solution
technique. DSM languages tend to support higher-level abstractions than
general-purpose modeling languages, so they require less effort and fewer
low-level details to specify a given system. [1, 2] To support DSM a number
of tools or frameworks are available. In this report we will discuss three of
them: MetaEdit+, GMF and AToM3. The first two will be discussed quiet
detailed as the latter one is supposed known to the reader. This report will

Email address: nick.baetens@gmail.com (Nick Baetens)

Preprint submitted to Modelling and Simulation Based Design June 29, 2011



focus on the architectures and the development process using these tools. In
the end we will compare them according to our findings.

Related to this work is a report by Steven Kelly [3], an employee of Meta-
Case. In that report a logic example is implemented both using MetaEdit+
and GMF, there is however no comparison on the workflow of both packages.
They mostly focus on the time that was needed to implement the example,
and MetaEdit+ came out as the winner. But this should perhaps not be
considered a surprise from a writer that works with MetaCase.

Nowadays there are powerful tools for DSM. An ongoing problem is the
insufficient tool interoperability which complicates the development of com-
plete tool chains or the re-use of existing meta-models, models, and model
operations. In the work of Heiko Kern [4] the approach of M3-Level-Based
Bridges is presented and this approach is applied to enable the interoperabil-
ity between MetaEdit+ and GMF.

In the next sections we will discuss both the architecture and workflow
of MetaEdit+ and GMF, followed by a comparison of the two packages plus
ATOM3.

2. The Traffic Example

In this report we will refer to the traffic example, this example models
traffic flows. The objects in this example are:

• Car

• RoadSegment: attributes capacity and load. Capacity defines the max-
imum number of cars that can be on the road segment, the number
of cars on the road segment (= load) must be less or equal than the
capacity.

• SplitSegment: subclass of RoadSegment; splits one incoming road seg-
ment in to two outgoing segments.

• MergeSegment: subclass of RoadSegment; merges two incoming road
segments in to one outgoing segment.

• Car Generator: creates new cars.

• Car Collector: destroys cars.

2



• Traffic Light: attribute color with values ”red”, ”yellow” and ”green”.
When the light is red, cars on the road segment may not proceed.

We will try to model this example using MetaEdit+ and GMF. As we will
see these packages can not implement the same features.

3. MetaEdit+

3.1. Specifications

In this section we will discuss some concepts used in MetaEdit+, for
starters we will go into meta-modeling and take a look at MetaEdit’s imple-
mentation. Next we will go into more details about the architecture of the
environment.

3.1.1. GOPRR

Meta-modeling in MetaEdit+ is based on the GOPPRR (graphical) meta-
modeling language. GOPPRR is an acronym formed from this language’s
base types which are Graph, Object, Port, Property, Relationship and Role.

Graph is the top-level structure of the meta-model. It defines one lan-
guage or diagram technique such as Class Diagram or State Transition Di-
agram. The actual semantics of the graph are defined as the bindings of
objects, relationships, roles and ports within the graph. Properties are char-
acterizing attributes that can be attached to each of these other types. [5]
Let us go through these language concepts in more detail: [6]

Graph specifies one modeling language, the details of each language are
modeled with a separate meta-model. An object in a graph can contain
subgraphs, this is called decomposition. But is also allowed for objects, re-
lationships or roles to be linked to other graphs, this is called explosion. For
these two techniques a meta-model for multiple graph types is needed. Ob-
ject describes the basic concepts of a modeling language. Objects are the
main elements of a design. They are elements that are connected together,
the properties of such connections are defined by relationships. Inheri-
tance (creating subtypes of other language concepts) is a good example of
a relationship. Each object in a relationship plays his role, Superclass for
example. In a graph objects, relationships and roles must be bound. A bind-
ing connects a relationship, two or more roles, and for each role, one or more
objects in a graph. Binding is further specified with multiplicity. Objects
can be grouped in Object Sets, these sets describe a collection of objects that
can play the same role in a binding.

3



Graphs, Objects and Relationships can have attributes, information that
these concepts carry with them. This information can be of different types:
string, text, number, Boolean, collection etc, or they can contain a link to
other modeling language concepts. We call this attributes Properties.

MetaEdit+’s implementation of the above described GOPPRR meta-
modeling language was written in Smalltalk and provides useful flexibility
for the meta-modeler. The meta-modeling state is always ”live”, i.e. the tool
will automatically propagate changes in the meta-models into the models.
[5]

3.1.2. The Environment

The functional architecture of MetaEdit+ is illustrated in Figure 1, as
depicted there are several different tools. A tool, as the term is used within
the MetaEdit+ environment, is a window type with its associated function-
ality, through which a user can view and possibly alter a design objects in a
particular way. Most of them will be discussed in the next section. Here we
will describe the environment as such. The heart of the environment is the
MetaEngine, which handles all operations on the underlying conceptual data
through a well-defined service protocol. [8] There is no direct communica-
tion between components at the same level, or over a common bus between
components separated by more than one level: tools communicate only via
the MetaEngine. The different tools request services of the engine in access-
ing and manipulating repository data. We will come to the repository later
but due to the fact that the engine handles the communication between the
repository and the different tools there is no need to duplicate the manipu-
lation code and it will make things easier when extending the environment.
The data is stored in a repository so it is possible to run MetaEdit+ as a
single-user workstation environment, or simultaneously on many workstation
clients connected by a network to a server. The data will be shared amongst
the clients. Each client has a running instance of MetaEdit+, including all
its tools and the MetaEngine, without the engine no communication would
be possible. So what is in that repository? Quiet a lot actually, it is holding
all the data contained in models, and also in the meta-models, in addition
to user and locking information. To be more precise: object specification
base containing all the method specifications represented as GOPRR con-
cepts; symbol specification base containing all symbols needed to represent
Objects, Relationships and Roles; tool related information base containing
all information needed to represent conceptual objects in different tools (such

4



Figure 1: Multi-user environment [7]

as spatial coordinates, or size), user information base containing all informa-
tion related to various users such as their passwords, access rights, or current
locks held; report specification base containing all report and other output
specifications. [8] When it comes to updating, it is important to know which
policy is applied. It is vital to ensure that information in instance mod-
els created with the older version of the meta-model is not lost when the
new version is deployed. During the development of MetaEdit+, a lot of ef-
fort has been invested in ensuring the seamless updates of meta-models and
models. In many cases a conservative approach for modifying the existing
meta-models and design data has been adopted. [7] For example, if a concept

5



is removed from the language, the creation of new instances of the type will
not be possible, but existing instances of this concept are not removed from
the models but rather be marked as obsolete.

In the design of the environment the tools are classified into five distinct
families according to their purpose and underlying common functionality. [8]

• Environment management tools

• Model editing tools

• Model retrieval tools

• Model linking and annotation tools

• Method management tools

In the next section we will continue to describe the different tools as a
workflow. Meaning that the tools will described in the order they show up
in the development process.

3.2. Workflow

In this section we will guide the user through the workflow to develop a
model and its underlying meta-model. When we start up MetaEdit+, the
first screen that shows up is a login screen as depicted in Figure 2. The user
can choose with which repository he wants to work. As already mentioned in
the previous section, this repository can be local (on the user’s desktop) or
on a remote location (in this case a repository server runs on the network).
After the user has entered the right credentials we move along to the next
screen.

Figure 3 shows the meta-model browser. The middle pane shows all the
meta-models in the project, the right one shows the types present in each
meta-model. This browser will be the starting point to develop a new meta-
model, as all the tools needed can be accessed from here. So after we created
a new meta-model, we can add types to it, this is done with the Object Tool
shown in Figure 4.

The Object Tool can’t be called surprising, all the suspects one could
expect when defining a type are there. The new type should have a name
and the user can define some properties. Quiet a number of possible types
for those properties are already build in. For example it is very easy to give
an unique id to a type, the user can select that this id should be the creation

6



Figure 2: Repository Login

Figure 3: Metamodel Browser

time of the instance. Once the new type is saved, the user can define how
this type should appear in a model. Once again MetaEdit+ offers a tool that
is powerful enough to meet most of the user’s requirements. The symbol
editor is shown on the right side of Figure 3. The user has the freedom to
draw his own symbol from scratch, but it is also possible to import some

7



images. The user may find it helpful to display the state of the properties,
an example is shown in the picture. Both the load and capacity of a road
segment will be displayed in the model. In principle the type is ready to be
used in a new model. Not much can be done with it though, no relations,
roles or restrictions are defined. So it is time to do so.

Figure 4: Object Tool and Symbol Editor

We need the Graph Tool to finish the meta-model, there are several tabs
in this tool and some small features that do not feel natural. For starters
there is the Types tab, there are 3 columns displayed here: Relationships,
Roles and Objects. The first two are related, the third one just shows which
types are defined. So we can create a new relationship in a similar way
we created the types earlier, this includes the user defined symbols. If we
select the newly created relationship the second column will be empty, it is
necessary to define roles to go with the relationship. For example a source
and a target role, here again a user defined symbol can be added. In the
example in Figure 5 we choose to draw an arrow towards the target object.
So speaking of unnatural, one could expect that the third column shows
which types can play the selected role. For some reason MetaEdit+ chose to
define bindings in a separate tab, Figure 6.

In this tab we see the same three columns again, with an additional Port
column. Here every column displays the information as one could expect. A
relationships has several roles, the user can select a port (this is optional)
and in the last column we add every object that may play the selected role

8



Figure 5: Graph Tool: Types

in the model. This is quiet straightforward but it can be time consuming
when the number of relationships increases.

Figure 6: Graph Tool: Bindings

Now that types and relationships are defined, the user may want to con-
straint them. MetaEdit+ supports several kinds of constraints: [9]

• Object connectivity in the binding (e.g. an object may be in a certain

9



role at most a specified number of times).

• Object occurrence (e.g. an object type may have only a specified num-
ber of instances in a graph)

• Ports involved in binding (e.g. all ports of a specified type in a binding
must have the same value for a specified property)

• Property uniqueness (e.g. all objects of a certain type in a graph must
have unique values for a specified property).

Figure 7: Graph Tool: Constraints

There is still a tab left in this window that we did not discuss, the sub-
graph tab. This can become useful if the meta-model becomes large, there
are two kinds supported: Decomposition and Explosion. Differences between
these two will not be discussed here.

Once we finished all of the described steps, our meta-model is ready for
modeling. So in the main window we switch to the Graph browser, after
creating a new graph the screen in Figure 8 shows up. All the defined types
of the meta-model appear on top of the diagram and the user can start
connecting them together. Here we see the result of the effort we put in
the Symbol Editor. What if we want to put a constraint on the value of a
property? The different kind of constraints mentioned above do not support

10



Figure 8: Model Editor

this feature. The user has to come up with his own solution, an example can
be found in the example repository of MetaEdit+, the S60 phone application.

Here we want to make sure that the length of a zip code is 5 in order to
be a valid zip code. These kinds of constraints have to build in the model,
we are not aware of a way to build them in the meta-model somewhere.

If the user wants to generate code out of his models he should ”imple-
ment” a generator. The Generator Editor is an interactive development en-
vironment for creating, editing and managing generators. It allows the user
to view, edit and run available generators, and to create new generators for
your needs. [9] An example Generator Editor window is shown in Figure 10.
This completes the workflow of MetaEdit+, we will now switch to another
package, GMF.

4. Graphical Modeling Framework

4.1. Specifications

GMF is based on two other frameworks, the Eclipse Modeling Framework
(EMF) and the Graphical Editing Framework (GEF). How these two work
together will be discussed later on, but let us first specify these technologies.

11



Figure 9: Condition in a model

Figure 10: Generator

12



4.1.1. Eclipse Modeling Framework

The EMF project is a modeling framework and code generation facility for
building tools and other applications based on a structured data model. From
a model specification described in XMI, EMF provides tools and runtime
support to produce a set of Java classes for the model, along with a set of
adapter classes that enable viewing and command-based editing of the model,
and a basic editor. [10] EMF consists of three main parts:

• Core: EMF has its own implementation of the Essential Meta Object
Facility (EMOF), called Ecore. These metamodels are domain models
described in the meta-meta language MOF. The latter was designed
to describe meta languages in such a way that it is possible to export
and import (also across networks) created models. This is ensured by
the OMGs standard format for model storage: The XML Metadata
Interchange (XMI), which is based on eXtensible Markup Language
(XML). [11]

• Edit: The main goal of this part is to display EMF Objects in JFace
Viewers. The Eclipse user interface framework (JFace) includes a set
of reusable viewer classes (for example TreeViewer, TableViewer) for
displaying structured models. JFace viewers work with any kind of
object. This is possible because the viewers, instead of navigating the
model objects directly, access the model objects through an adapter
object called a content provider. The EMF.Edit framework provides
a generic content provider implementation class that can be used to
provide content for EMF models. [12]

• Codegen: The EMF.Codegen provides the ability to generate Java code
from a domain (Ecore) model. For each class in a given domain model,
a Java interface with the needed getter and setter methods will be gen-
erated along with an implementation and factories to create instances
of the domain model classes. [11]

4.1.2. Graphical Editing Framework

The Graphical Editing Framework (GEF) provides technology to create
rich graphical editors and views for the Eclipse Workbench UI. [13] These
editors consist of several components:

• The diagram editor including tool palette

13



• Figures which graphically represent the underlying data model elements

• EditParts which match figures and their respective model elements

• Request objects for user input

• EditPolicy objects which evaluate the requests and create appropriate
command objects

• Command objects that edit the model and provide undo-redo

Some of these components will appear in the workflow described in the next
section. Our goal is to create an Eclipse plug-in, which will implement a
graphical editor for a specific domain model. It is important to note that
GEF makes no restrictions on the underlying model, it can be an EMF
model, Java code, etc. But as we will see later, we have to abandon this
freedom. GEF follows the MVC (model-view-controller) concept, meaning
that there is a separation between the model, its graphical representation
(view) and the program logic (controller). [11] In MVC design, the controller
is often the only connection between the view and the model. The controller
is responsible for maintaining the view, and for interpreting UI events and
turning them into operations on the model. We will explain what happens
if we use EMF and GEF together in the next part.

4.1.3. Bringing the parts together

Our goal is to generate a GEF editor from an EMF model, so we want
to build models in a graphical environment on top of a meta-model. The
meta-model will be managed by EMF, the graphical part by GEF, but we
need to stick these two together. GMF makes it easier to complete this job
by offering a guided way to do so. There are two main parts: a Runtime
Environment (which extends some feature of both EMF and GEF) and a
Generation Framework. The last one contains special editors to handle the
GMF models and a generator which produces the editor code from the GMF
models. So what are these GMF models? There are three models to define
the domain and visual representation, further there is one more to generate
the code of the plug-in. These models will be discussed in the next section
but we will descibe the general picture here. Figure 11 shows what we are
aiming for.

On the left there is the meta-model (defined in EMF, a .ecore file), on
the right there is a visual representation (GEF), what about the gap in the

14



Figure 11: GMF: The glue between EMF and GEF

middle? Every element of the domain model which shall be displayed needs a
representative in the graphical definition model. For every class there will be
a node entry, for each connection a connection entry. There will be a figure
descriptor assigned to each entry, as the name already reveals this descriptor
defines the visual appearance. Or in other words it will tell GEF how to
draw the according model element. Figure descriptors can be shared among
several entries so these entries will have the same visual representation.

4.2. Workflow

Developers who create graphical modeling-like editors using GMF follow
this simplified workflow as depicted in Figure 12:

• Create a domain model, this model defines the non-graphical informa-
tion managed by the editor

• Create a diagram definition model, this model defines graphical ele-
ments to be displayed in the editor

• Create a diagram mapping model, this model defines mapping between
domain model elements and graphical elements

• Generate the graphical editor

• Enhance the graphical editor by editing the generated plug-in code

15



Figure 12: GMF Workflow

Figure 13: GMF Dashboard

To assist the user going through the different steps, the GMF presents
the Dashboard. The Dashboard, as depicted in Figure 13, will tell the user
what to do next. In theory nothing can go wrong if the user follows the
arrows in the Dashboard, in theory that is. The view is very useful but it
lacks a crucial step to come to working model editor. Tutorials that show you
how to get started with GMF jump right into the wizards that are provided
as part of the SDK. The wizards and Dashboard that are used to develop
GMF applications are very powerful. With the exception of the data model,
all of the configuration files can be generated from wizards. [14] Herein lies
the danger, since the user is not always knowing what he is doing. We will
explain the role of every model and mapping in the sequel.

16



4.2.1. Domain Model Definition

The first model we run into is the Ecore Model, as one could suspect from
the Dashboard, this will be the heart of the model editor we are developing.
All types and relationships between them are defined in this model. The
meta-model is displayed as a tree (Figure 14). No visual representation is
added here, so there is no such thing as a symbol editor involved in this stage.
This will be the next step, introduce a new model to visualize things.

Figure 14: Ecore Model

4.2.2. Graphical Definition

So as we just said, in this step we define a gmfgraph file, which will
be used in the diagram to display classes from the domain model. Basic
building blocks are nodes, links, etc. But is also possible to link some images.
Note that is not possible to create a symbol as it was with MetaEdit+.
This representation can be generated automatically with a wizard. There is
nothing of great interest in this gmfgraph file, the user can leave the default
options in it or experiment with it.

4.2.3. Tooling Definition

The gmftool file is a tooling definition that defines what text you want
to display on the tool palette and the button’s tool tip. So when the user

17



starts the generated Eclipse plug-in and wants to start modeling there will
be an editor with some palettes. One of them will contain all the types and
relationships the user has defined earlier. In this step we add the meta-model
to this palette.

4.2.4. Mapping Definition

So now that we have these different models it is time to bring the pieces
of the puzzle together, this done in the gmfmap file. This is perhaps the
most difficult step because errors in the previous discussed model will come
to the surface here, on the bright side is the fact that there is a wizard for
this model as well. In short we have to tell GMF what action to take when
a tool is selected, what classes are to be created, and what figures to render
when those classes are added to the diagram. As shown in the Dashboard it
is this model that will as input to a transformation step which will produce
our final model, the generation model.

Figure 15: Mapping

18



4.2.5. Code Generation

Before we can actually run the plug-in we have to generate code out of the
models we just developed. To do this we need a gmfgen file in order to set the
properties for code generation. As a modeler there is no need to understand
all things that are executed in the background once the ”generate” button
is clicked. The framework will take care, finally the plug-in is ready for an
initial test.

4.2.6. Start Your Plug-in

If all the previous steps are executed correctly a similar screen as depicted
in Figure 16 should appear. From our experience we can say that it can take
a while before everything is working as it should be. Especially if we consider
the time it takes to generate some models and the code over and over again
in order to correct errors. In the next section we will compare the features
of the different packages.

Figure 16: Model Editor

19



5. Comparison

In this section we will make a comparison between GMF, MetaEdit+ and
AToM3 . The first features we discuss can not be called spectacular but we
go through some low level differences in the rest of the feature list we propose
here.

5.1. Stand-Alone Application

AToM3 and MetaEdit+ deliver a complete package which can be used as
a whole. GMF on the other side is only a plug-in to go with Eclipse. This
can be seen as an advantage as the user can already be familiar with Eclipse
as an development environment. This will be more of a plus for the end-
user (model designer, not the meta-model designer), as he can just switch
perspectives from modeling to actual coding. For the non-Eclipse fans, the
first two applications will be a more appropriate choice.

5.2. Meta-Model

Where AToM3 has a graphical representation of a meta-model, GMF
uses a tree representation. In MetaEdit+ the meta-model is spread among
different tools and there is no place where the meta-model is displayed as a
whole. It is hard to tell which one is best because this can be vary due to
the users’ habits and needs.

5.3. Build Models

For this feature GMF differs from MetaEdit+ and AToM3 , the latter
two let the user build models out of meta-models in the same environment.
With GMF this is not strictly the case, here we build our meta-model and
graphical mapping and generate a new plug-in. The editor for the models is
in fact a new application, but it depends on GMF of course. For meta-models
that are stable this will not be considered a drawback, but for evolving ones
this makes the update cycle longer. On the other hand it can be seen as
an advantage that the end-user only needs the generated plug-in, it is not
necessary to ship your meta-models to them.

5.4. Symbol Editor

This will not be considered a major issue but it is worth mentioning that
only MetaEdit+ and AToM3 contain a symbol editor. In GMF the user can
only choose between some basic shapes (such as a rectangle) which can be

20



colored. For users who do not consider themselves an artist, all three packages
are able to import external files for the symbols. Another difference is that
in MetaEdit+ and AToM3 it is possible to display the status of an attribute
of a model element. For example the load of a road segment in the traffic
example. GMF does not seem to support this feature or it is pretty well
hidden.

5.5. Multi-user

As we already discussed MetaEdit+ supports multi-users right out of
the box as it uses a repository to manage the models. It will be another
story for GMF and AToM3 as no such feature is included in the standard
release. It is of course possible to use a version control tool together with
the modeling tools but that will only help to distribute the models amongst
several users. Features like the conservative approach used in MetaEdit+
will have to implemented by the user himself, which makes it a lot harder
to develop/use. With GMF we also take into account that different versions
of a meta-model probably will not be detected as a new plug-in is generated
every time the meta-model changes. Collaborative model (not meta-model)
development can be achieved with the use of the Subclipse plug-in, as long
as it is not simultaneous.

5.6. Multi-view

Related to the previous feature, but not quiet the same, is the multi-view
feature. In MetaEdit+ the user can open a model as a diagram, a table or
as a matrix. These three views will remain consistent all of the time. This is
made possible by the GOPRR principle. Unlike OPRR the GOPRR model
allows multiple representations of the same underlying conceptual object (e.g.
graphical, matrix, text), and even different graphical representations of the
same object in the same representation paradigm. This is achieved by mak-
ing available mechanisms that can override the default representation. In
this sense GOPRR forms a true conceptual kernel on which varied represen-
tations of data, including not only graphical diagrams but also hypertext,
text and matrices, can be built. This allows GOPRR to support a wide
range of methodologies including matrix, table or text oriented ones, and
gives users the ability to see and manipulate design information in a variety
of representations. [8] The other two packages do not include this feature
in their standard distribution. However, this does not mean that multi-view
can not be achieved. For AToM3 it is shown that it is possible to implement

21



with the Observer design pattern. This allows easy to implement consistency
management. To allow for the transformation between different view types,
transformation rules have to be defined. The AToM3 tool provided an easily
extendable environment and already offered the support for defining trans-
formation rules. [15] In GMF multi-view is almost impossible to achieve,
the main reason is that it will be necessary to adapt the GMF framework to
our needs. We will have to define several different approaches to generate a
new plug-in out of a meta-model. Currently there is only one way available
but the multi-view functionality itself should be possible to implement in
a similar way as they did with AToM3 . Also recall that MetaEdit+ uses
different tools, each user can operate several tools simultaneously where each
tool provides a different view to the same object. [8]

5.7. Consistency Model

For the consistency model we see three different approaches, this will allow
us to make a ranking based on the time it is needed for an update. Let us
start with MetaEdit+, this is without doubt the faster of the three, changes
in the meta-model are reflected immediately in the model. We assume that
the tool for meta-modeling and the model editor are both open. If we then
add a property to one of the types and change its visual representation to
display this additional property the model will be changed once we switch
to the editor tool again. This is a good example why locking can be used
in the repository, when two users are working simultaneously, one modeler
and one meta-modeler, the modeler can lock the meta-model to prevent his
model from updating. In GMF we see the complete opposite, as mentioned
before GMF is strictly used to develop a plug-in with a meta-model in it.
The actual modeling is done using that plug-in. So if we want to update
the meta-model we have to regenerate the plug-in and update the Eclipse
environment to use the new version. Remark that the update process is by
no means automated, the user has to update his Eclipse version manually
or at least give the command to actually perform the update. This is by
far the slowest of the three approaches, therefore we would not recommend
to use GMF with instable meta-models. Finally we come to AToM3 , this
approach can be placed in the middle of the previous ones. If the user wants
his models to be updated according to the meta-model he has to reload it.
So if one runs several instances of AToM3 , one to change the meta-model
and one to change the model, the changes will not be reflected in the other
instance as long as the user does not reload the model. So basically if you

22



open a model with MetaEdit+ and AToM3 the user knows that he is working
with the latest version of the meta-model at that time. Once the model is
loaded, only MetaEdit+ for fills this promise. In GMF you are working with
the latest version at the time the plug-in was generated.

5.8. Static Semantics

Here we will focus on the way constraints can be defined in the different
packages. In AToM3 constraints can be defined in Python, it is possible to
lay constraints on relationships (for example: a car can be only on one road
segment at the same time) but also on attributes of an object (the number
of cars on a road segment (attribute: load) must be lower or equal than the
capacity of that road segment). As we discussed before MetaEdit+ only sup-
ports constraints on relationships out of the box. Constraints on attribute
values can not be included in the meta-model, a trick must be applied at the
model level. As shown in Figure 9, it is possible to enforce that a zip code is
of length 5 for example but we hesitate to call this kind of construction a con-
straint. GMF on the other hand, supports constraints defined in the Object
Constraint Language (OCL). OCL was introduced in an effort to comple-
ment the UML meta-language. This language is able to describe additional
relevant aspects of a specification which cannot be described in UML itself.
For example it can express some additional constraints about the objects in
the model. Such constraints are often described in natural language. Prac-
tice has shown that this will always result in ambiguities. In order to write
unambiguous constraints, so-called formal languages have been developed.
The disadvantage of traditional formal languages is that they are usable to
persons with a strong mathematical background, but difficult for the average
business or system modeler to use. [16] This is where OCL comes in as it is a
formal language but without the massive mathematical expressions, it aims
to be easy to read and write. OCL a descendant of the Syntropy1 method

1Syntropy is an object-oriented analysis and design method developed at Object De-
signers Limited in the UK in the early 1990s. The goal in developing Syntropy was to
provide a set of modelling techniques that would allow precise specification and would
keep separate different areas of concern. The approach was to take established techniques,
as found in methods such as OMT and Booch, and reposition and refine them. Graphical
notations were much favoured by the market but lacked rigour, so Syntropy adopted ideas
from formal specification languages, specifically Z, to provide tools for both precise defini-
tion of the graphical notations and for the construction of richer models than are possible
with pictures alone. [17]

23



and was originally intended as a business modeling language within the IBM
Insurance division. Today it is part of the UML standard. In the sequel we
will describe some properties and uses of OCL, and introduce some examples.

• OCL is a pure specification language. This means that the eval-
uation of an OCL expression will not change the state of the model.
OCL can however describe the change of a state in order to evaluate a
postcondition for instance but it will never actually execute the change.
When an OCL expression is evaluated, it simply returns a value. As a
specification language, all implementation issues are out of scope and
cannot be expressed in OCL.

• OCL is not a programming language. OCL expressions are not by
definition directly executable, it is not even possible to write program
logic or flow control in OCL.

• OCL is a typed language. Each OCL expression has a type (a list
of types can be found in the specification [16]). To be well formed,
an OCL expression must conform to the type conformance rules of the
language. (For example, it is not allowed to compare an Integer with
a String.)

• The evaluation of an OCL expression is instantaneous. This
means that the states of objects in a model cannot change during eval-
uation.

Some general examples:

• The number of bosses who have more than 10 reports:
company.employees → select (title = ”Boss” and self.reports → size >
10)

• The set of pilots who have enough training hours:
flight.pilot.training hours ≥ flight.plane.minimum hours

So how does this works in GMF? The constraints must be defined in the
mapping model as shown in Figure 17.

24



Figure 17: OCL constraint in GMF

The constraints in the example enforce that there may not be an incom-
ing connection to a car generator and no outgoing connections from a car
collector. Constraints on relationships will avoid the creation of an element
if the constraint will be violated if the element was created. So we will not
be allowed to draw an outgoing connection form a collector. The general
examples can also be adopted to apply on the traffic example: self.load ≤
self.capacity with self a road segment. As such the domains of the attributes
of an object can be defined. After the static semantics it is time for opera-
tional semantics.

5.9. Operational Semantics

In MetaEdit+ an API is included which provides the interface to read,
create, and update model elements, as well as control MetaEdit+ for script-
ing or simulation support, it is important to note that the dynamic link is
real-time. Modifications made through the API are reflected immediately in
the different tools. There are several uses possible with the API, to name
two of them: Simulation and Model Transformations. The first one let us
the user animate models while running code. For instance a car will move
from road to road in the traffic example. Model transformations support up-
dating all models with similar changes. The MetaEdit+ API uses the widely
supported and open SOAP / Web Services / .NET standard for application

25



integration, making MetaEdit+ functions accessible from almost any pro-
gramming language and platform. GMF on the other hand will only support
Java, but also is platform independent (thanks to Java). In GMF there is
also an internal representation and API where we can play want if we want.
The internal representation of the diagrams is again a tree. It is possible to
change the properties of the elements such as their place and size. To put
this in practice there is some coding work to do, in fact an additional plug-in
must be developed in order to implement a simulation for example. Unlike
AToM3 there is no debug window to help the user, the same story as with
consistency model applies here. It takes a long time to produce correct code.
So why we need an additional plug-in, the main reason is the invocation of
the simulator. Some button or menu-item must be added to Eclipse, the
associated action will then be the actual simulation. Nevertheless, it is pos-
sible to implement and as a proof of concept we would like to refer to a tool
developed by the writer. This tool is also a plug-in for Eclipse and serves
to check UML models for consistency. In order to represent inconsistencies
some notes are added to the diagram and moved to a position relative to the
inconsistent model element, this is depicted in Figure 18. To implement this
tool we actually took advantage of the mapping between EMF and GEF we
discussed in the previous section. We added some figure descriptors, these
are supplied to GEF which draws these figures on screen but we did not add
a mapping to the actual model. So we altered the diagram without changing
the underlying model. This makes sense because we do not want to add
semantics to the model by representing inconsistencies, the representation
only helps the user to understand where he made a mistake. To implement
a simulation we need to change both the model and the visual parts. To
create and delete model elements we need to mess around with the model, to
change the place of objects in the representation we need to change the visual
parts. Another issue is the fact that GMF does not provide direct access to
the model, it is not possible to access the model that is loaded by GMF. The
user has to build classes that load the model again, then the model can be
altered and finally saved. Once it is saved the editor will refresh and display
the changes. So when implementing a simulation the user has to save the
model after each modification manually. AToM3 support similar features as
MetaEdit+ except that is restricted to Python as programming language.
Transformation rules are only supported by AToM3 in the standard distribu-
tion. But MetaEdit+ and GMF can be extended to do so, this will require
some coding work. On top of that it will no be possible to program the rules

26



in a visual way like in AToM3 but rather through the API’s. This concludes
our comparison of the different packages, it is time to come to a conclusion
based on our findings.

27



Figure 18: Resclipse

28



6. Conclusion

If it comes to a conclusion about what DSL editor is best, it is probably
useful to distinguish industrial environments from research bases. In indus-
trial environments one is looking for stable applications that work out of the
box and suit the needs without having to develop some extra features. Many
good things can be said about AToM3 , but when it comes to stability we
have to admit that there is room for improvement. This rules it out of the
race at the moment. GMF offers a stable framework, but perhaps it lacks
some essential features to make it a success in industry. Collaborative devel-
opment for instance, is harder to achieve in GMF than it is with MetaEdit+.
So if we round up, MetaEdit+ is probably the best choice in an industrial
environment, it offers quite a number of features the other packages lack.
But on the debit side is the price of the package, licenses are pretty expen-
sive. We can not judge if this investments pays of, it probably does because
MetaCase became a successful company.

If the user is doing research, he probably will not be willing to buy an
expensive license. In that case we have to choose between AToM3 and GMF.
These two will be competitive in this setting and it will be more less a subjec-
tive choice. If the user is familiar with Eclipse he might choose the GMF, it
will take some time before he really becomes acquainted with the smaller de-
tails of the package. GMF is perhaps not the most intuitive package, AToM3

on the other hand suffers from the same disease sometimes with mouse com-
mands that are not straightforward. But it probably all comes down to habit.
AToM3 has the advantage that supports operational semantics better than
GMF, in that case it depends on the features the user actually needs which
package is right for him. So making a comparison it not that hard, making a
ranking is. There are a lot of aspects a user can base his decision on, that’s
why a sole conclusion can’t be drawn. We hope that our work can contribute
in making the right decision to suit the user’s needs.

29



References

[1] “http://en.wikipedia.org/wiki/domain-specific language/.”

[2] “http://en.wikipedia.org/wiki/domain-specific modeling/.”

[3] S. Kelly, “Comparison of eclipse emf/gef and metaedit+ for dsm.,” In
19th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, Workshop on Best Practices for
Model Driven Software Development., 2004.

[4] H. Kern, “The interchange of (meta)models between metaedit+ and
eclipse emf using m3-level-based bridges,” in 8th OOPSLA Workshop
on Domain-Specific Modeling at OOPSLA 2008 (J. Gray, J. Sprinkle,
J.-P. Tolvanen, and M. Rossi, eds.), pp. 14–19, University of Alabama
at Birmingham, 2008.

[5] R. Pohjonen, “Metamodeling made easy – metaedit+
(tool demonstration),” 2005.

[6] MetaCase, “The graphical metamodeling example,” 2008.

[7] J.-P. Tolvanen and S. Kelly, “Metaedit+: defining and using integrated
domain-specific modeling languages,” in Proceeding of the 24th ACM
SIGPLAN conference companion on Object oriented programming sys-
tems languages and applications, OOPSLA ’09, (New York, NY, USA),
pp. 819–820, ACM, 2009.

[8] S. Kelly, K. Lyytinen, and M. Rossi, “Metaedit+ a fully configurable
multi-user and multi-tool case and came environment,” in Advanced
Information Systems Engineering (P. Constantopoulos, J. Mylopoulos,
and Y. Vassiliou, eds.), vol. 1080 of Lecture Notes in Computer Science,
pp. 1–21, Springer Berlin / Heidelberg, 1996.

[9] “http://www.metacase.com/support/45/manuals/meplus/mp.html.”

[10] “http://www.eclipse.org/modeling/emf/.”

[11] M. Rohs, “A visual editor for semantics specifications using the eclipse
graphical modeling framework,” Master’s thesis, University of Pader-
born.

30



[12] “http://org.eclipse.emf.doc/references/overview/emf.edit.html.”

[13] “http://www.eclipse.org/gef/.”

[14] “http://onjava.com/pub/a/onjava/2007/07/11/
gmf-beyond-the-wizards.html.”

[15] B. Smets, “Multiview modelling using atom3,” 2010.

[16] Object Management Group, “Ocl 2.2 specification,” 2010.

[17] “http://www.syntropy.co.uk/syntropy/.”

31


