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Abstract

Feature modelling is the greatest contribution of software product line en-
gineering to software engineering. It is a must when dealing with reusable
software. It helps to identify and capture variability. First a survey is given in
which feature modelling is explained in detail. Second a formalism is presented
in which feature models are easily designed as feature diagrams. This meta-
model is created using a tool for multi-formalism and meta-modelling called
AToM3. It provides an interface to design models that comply to the formal-
ism. The created meta-model allows feature diagrams that are not trees, but
more general graphs. In addition to the parental relationships of features and
concepts, cross-graph constraints are possible. Thirdly, instead of creating a
new formal analysis tool for the introduced formalism, a transformation to a
lightweight modelling language called Alloy is presented. In domain engineer-
ing, formal analysis can provide useful insights into the design. The provided
transformation, based on the model-driven architecture, can be automatically
analysed by the Alloy Analyzer. As a final point a conclusion is given and some
future work is proposed.
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1. Introduction

For some people feature modelling is still quite a vague subject. Therefore
this paper will give a survey in which not only the details of feature modelling
are explained, but also the context from which it originated. There are not a
lot of tools out there that provide an easy interface to design feature models.
Hence in this paper a new feature modelling tool is introduced that is crafted
using a tool for multi-paradigm modelling. Formal analysis, which will also be
discussed in this paper, is an important part of feature modelling. A tool that
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allows feature modelling should provide functionality to perform such analysis
on the models. Consequently a method is proposed that allows formal analysis.
Instead of adding direct functionality to the tool, a transformation is proposed
to a textual language. Using an already published tool to perform analysis on
that language, one can thus perform analysis on feature models. This method
is similar to the work of Anastasakis et al. (2010).

Section 2 presents the survey of feature modelling. Section 3 introduces the
tool to design feature models. Section 4 presents the problem of formal analysis
and gives the transformation as a solution. Section 5 concludes and section 6
presents interesting possibilities for future work.

2. A Survey of Feature Modelling

2.1. Origins and Definitions

Feature modelling was first introduced in the Feature-Oriented Domain Anal-
ysis (FODA) method by Kang et al. (1990). FODA is a domain analysis method
that became part of Model-Based Software Engineering (MBSE). In this paper
FODA is described on its updated definition by Withey (1996) and Czarnecki
and Eisenecker (2000). The FODA process consists of two phases1.

The first phase is called context analysis. This phase defines the scope of the
domain in which the products are created. Knowledge of the domain is used to
bound this scope. Furthermore, relationships are created between this domain
and other domains or entities.

The second phase is called domain modelling. During this phase the engineer
will try to produce a domain model by identifying and modelling the main
commonalities and variabilities between the applications in the domain. Domain
modelling consists of three steps.

1. Information analysis converts domain knowledge to the form of domain en-
tities and their relations. Examples of such techniques are object-oriented
modelling, entity-relationship modelling or semantic networks. This step
produces the information model.

2. Feature analysis “captures a customer’s or end-user’s understanding of
the general capabilities of applications in a domain. For a domain, the
commonalities and differences among related systems of interest are des-
ignated as features and are depicted in the feature model.” - Czarnecki
and Eisenecker (2000)

3. Operational analysis investigates the commonalities and differences be-
tween control and data flows of the domain. It yields the operational
model that captures the behavioural relationships between the objects in
the information model and the features in the feature model.

1Originally FODA contained a third phase called architectural modelling. This phase was
converted into the Domain Design phase of the MBSE.
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Another important result of the domain modelling phase is the domain dic-
tionary, which defines the terminology used in the domain.

Since its introduction feature modelling has been vigorously used in the Software
Product Line (SPL) community. As stated by Clements and Northrop (2002),
a SPL is a family of programs. When the building blocks of the programs are
features, every program in a SPL is identified by a unique and legal combination
of features. This is called a feature configuration.

Following the conceptual modelling perspective of Smith and Medin (1981)
a feature expresses the commonalities and differences of a concept instance. A
concept can be any element or structure in the domain. A feature is defined by
Kang et al. (1990) as a “prominent or distinctive user-visible aspect, quality or
characteristic of a software system or system”.

SPL engineering tries to systematically and efficiently create similar pro-
grams. The FODA analysis is used to identify the features in a domain that is
covered by a certain SPL.

Features can occur at any level (e.g. high-level system requirements, archi-
tectural level, subsystem and component level and object and procedure level).
Modelling their semantics requires some modelling formalism (e.g. object di-
agrams, interaction diagrams, state-transition diagrams, synchronization con-
straints). Feature models are just one of the many models describing a piece of
reusable software. A feature diagram is a visual notation of a feature model.

2.2. Notations and Semantics

There are many possible notations for feature models. First the basics will
be explained.

2.2.1. Basic Feature Models

A diagram can be viewed as a graph of nodes. Nodes can be either feature
nodes or concept nodes2. The parent node of a feature node is either a feature
node or a concept node. When the diagram is a tree (like in most cases), the
root will thus be a concept node. In Figure 1 an example of a simple feature
diagram is given. Feature0 and Feature1 are features of Concept0 and Feature2
is a feature of Feature0 and thus a sub-feature of Concept0.

There are four types of relationships between a parent node and its child
nodes (sub-features).

1. The mandatory relationship implies that the child node is included in the
description of a concept instance if and only if the parent node is included.
Note that a concept node is always included. The mandatory relationship
is represented by a simple edge from the parent node to the child node that
ends with a filled circle. An example of a feature diagram with mandatory
features is given in figure 1.

2Sometimes large diagrams are split up into a number of smaller diagrams. The roots of
these smaller diagrams are features of the concept node in the original diagram.
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Concept0 

 

Feature0 
 

Feature1 

 

Feature2 

Figure 1: An example of a feature diagram with mandatory features.

2. The optional relationship implies that the child node may be included
in the description of a concept instance if and only if the parent node
is included. This relationship is represented by a simple edge from the
parent node to the child node that ends with an empty circle. An example
of a feature diagram with optional features is given in Figure 2. Every
instance of Concept0 must have Feature0 and Feature1 and every instance
of Feature1 may have Feature2 and Feature3.

  

Concept0 

 

Feature0 
 

Feature1 

 

Feature2 
 

Feature3 

Figure 2: An example of a feature diagram with optional features.

3. The or-relationship implies that at least one of the child nodes is included
in the description of a concept instance if and only if the parent node is
included. The nodes of a set of or-features are connected by a filled arc.
An example of a set of or-features in a feature diagram is given in Figure
3. Note that an or-feature is also optional or mandatory. If one feature of
a set of or-features is optional, all features of the set can be replaced by
optional features. This transformation is called normalization.

  

Concept0 

 

Feature2 
 

Feature1 
 

Feature0 

Figure 3: An example of a feature diagram with or-features.
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4. The alternative relationship (xor-relationship) implies that one of the child
nodes must be included in the description of a concept instance if and only
if the parent node is included. The nodes of a set of alternative features
are connected by an empty arc. An example of a set of alternative features
in a feature diagram is given in Figure 4. Note that an alternative feature
is also optional or mandatory. If one feature of a set of alternative features
is optional, all features of the set can be replaced by optional alternative
features. This transformation is also called normalization.

  

Concept0 

 

Feature2 
 

Feature1 
 

Feature0 

Figure 4: An example of a feature diagram with alternative features.

Feature diagrams can also contain cross-graph constraints. The most com-
mon constraints are the requires and excludes constraints. If in a feature di-
agram a feature requires another feature, than that feature can only be part
of an instance of the feature diagram if the other feature is included in the
instance. If a feature excludes another feature in a feature diagram, than that
feature cannot be part of any instance of the feature diagram that includes the
other feature. Such constraints are normally just added to the diagram as text.
One can of course imagine other less trivial constraints. Therefore a special
constraint language can be useful.

2.2.2. Cardinalities and Extended Feature Models

Some authors3 propose to add cardinalities to feature models. There main
motivation was driven by practical applications (Czarnecki et al. (2002)) and
conceptual completeness. Czarnecki and Eisenecker (2000) strongly recommend
not to use cardinalities in feature models because the only semantics of an arc is
whether to assert a feature or not. Annotating an arc with cardinality four only
implies to assert the feature four times. For example asserting the sentence “a
car has a wheel” four times still means “a car has a weal”. To make cardinalities
useful, one should add some label to the arc indicating the ”part of” relation,
though it is better not to do this to avoid cluttering feature diagrams with
structural information.

Other authors4 propose to extend feature models with additional informa-

3Czarnecki et al. (2005); Riebisch et al. (2002)
4Batory (2005); Czarnecki et al. (2005); Benavides et al. (2005a); Czarnecki and et al.

(2005); Kang et al. (1998); Benavides et al. (2005b); Batory et al. (2006); Streitferdt et al.
(2003)
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tion called feature attributes. FODA already considered this and introduced
relations between features and feature attributes. These types of feature mod-
els are called extended feature models. In the next sections we will only consider
the basic feature models.

3. A Feature Modelling Tool

3.1. Introduction to AToM3

AToM3 is a tool for multi-formalism and meta-modelling. In this paper only
a small part of the functionality of the tool is used. A complete overview of the
capabilities of AToM3 is given by De Lara et al. (2002). The overall picture of
AToM3 is that everything is designed as a model. Only the used functionality
will now be presented.

AToM3 allows the user to create a visual and concrete representation of
meta-models. From such a representation of a meta-model it is possible to auto
generate a toolbar from which visual and concrete representations of models can
be designed that comply to the meta-model. The layout of this toolbar can also
be modelled since it is also a model.

3.2. The AToM3 Meta-Model for Feature Models

In this paper a meta-model for feature models is presented. It was designed
using the meta-model CD ClassDiagramsV3: a meta-model which allows the
user to design other meta-models as class diagrams. The designed meta-models
may consist of classes and associations and there can be hierarchies among
classes. The complete visual representation of the meta-model for feature models
is given in Figure 5.

A feature is modelled as a concept with a parent. This makes it easier for
a user to design models. Besides their name (which is required to start with
a capital letter) features and concepts can contain additional information: a
semantic description, a rationale, clients and stakeholders, exemplar systems
and a priority.

Since AToM3 doesn’t allow direct relations between connections, the alter-
native set and or set is represented by a separate entity. Making a decoration
of an edge stick to the end of that edge is quite infeasible in AToM3. There-
fore the decoration that indicates if a feature is optional or mandatory is also
represented by a separate entity called a port.

One can view these modifications to the original representation of a feature
diagram as extensions because the entities give the designer the choice in rep-
resentation. For example if two parent features have the same child feature one
can choose to either redraw an entire new connection, or reuse part of the al-
ready drawn connections. This not only makes the representation clearer, it also
can significantly shorten the time required to design feature models. Another
modification to the original representation is that the ports can be moved from
the top centre of the rectangle representing a feature. Once a port is connected
to a feature, it will automatically move to the top centre of the rectangle of
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Figure 5: The complete visual representation of the meta-model for feature models that
complies to the meta-model CD ClassDiagramsV3.

that feature. When you want to add another port to the same feature, you can
move the first port and it will automatically stay at the top of the rectangle.
A feature can thus be optional to one parent, and mandatory to another. It is
possible to draw more general graphs instead of just trees.

The meta-model also includes necessary constraints. For example a feature
can only be connected to the same parent once. These constraints force the user
to design legal feature models. It is impossible to draw an illegal feature model.

To create cross-graph constraints there exists an entity Constraint in which
the user can add constraints. These constraints also have a name which is
required to start with a capital letter. One could argue that it would be nicer to
create a visual representation of constraints, for instance create special entities
(for example denoting and, or, requires, excludes, or brackets) and connect them
to each other. For simple cases this is feasible, but if a feature or concept has
to be in two separate constraints a new reference is required. For only a few
relatively easy constraints containing the same feature or concept, the feature
diagram will become very unclear. The AToM3 drawing space is also limited
so the designer would quite soon run out of space. So to eliminate all these
problems a simple textual modelling language was used. To avoid the work of
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creating a compiler to map this language to Alloy5 (see subsection 4.1), Alloy
itself was used.

As a final touch the AToM3 meta-model allows the creation of comments.
One might think this is a standard option in every formalism, but most of them
do not provide the support for comments. To give users better support for
documenting there models, this ability is thus provided.

3.3. Designing Feature Models with the Tool

Now that the formalism is complete, it is very easy to design feature models.
One must load the formalism using AToM3 and then the designing can begin.
An example that illustrates how to design a feature model is given in Figure
6. Note that the buttons are edited to make it more clear to the user what he
can use. An example of a feature diagram of a simple traffic model is given in
Figure 7.

 

Figure 6: An example of how to use the AToM3 meta-model of feature models by using the
toolbar.

3.4. Facts and Remarks

The formalism provides an interface that is very intuitive to use. People
with no experience in programming or modelling can use it without any prob-
lems. Everybody can quickly and easily draw nice feature diagrams. There are
however two caveats. When creating a complex feature diagram, one quickly
runs out of space. In AToM3 the drawing space is limited so this becomes a
problem. The other problem is that the constraint language is not that easy
to use. One must also note that although features and concepts can contain
extra information, this information is not used during the analysis from section

5Jackson (2006)
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Figure 7: The complete feature model of a traffic model designed using the AToM3 meta-
model.

4. Certain information might even conflict with the results of the analysis. So
when performing analysis on a feature model one must be careful. Possible
solutions are presented in section 6.

4. Formal Analysis of Feature Models

There has already been a lot of work6 on formal analysis of feature models.
Even in the original FODA report automated analysis was already identified
as a critical task. However there isn’t a consensus about which operations
should be included in this task. A nice overview of proposed operations is
given by Benavides et al. (2006). A possible operation could be determining
the satisfiability of the feature model. A feature model is satisfiable if at least
one product is represented by the feature model. Other possible operations
are finding a product, counting all products, obtaining all products, calculating
variability and commonality, detecting dead features, and so on.

Instead of creating a new tool that can perform formal analysis on feature
models, an existing and popular tool for formal analysis is used, called the
Alloy Analyzer from Jackson (2002). A feature model that is represented in the
AToM3 meta-model of section 3 will be transformed into an Alloy model using
an automated transformation process. As mentioned in the introduction this
approach is similar to the work of Anastasakis et al. (2010) where they propose
a method to transform models from the Unified Modelling Language (UML) to
Alloy.

6Batory et al. (2006); Czarnecki and et al. (2005); Deursen and Klint (2002); Mannion
(2002); von der Massen and Lichter (2003); Wang et al. (2005); Zhang et al. (2004)

9



4.1. Transformation to Alloy

4.1.1. Introduction to Alloy

As mentioned in section 3 Alloy is a textual modelling language. Further-
more it is based on first-order relational logic. A model in Alloy typically con-
tains a number of signatures, fields, facts, asserts and predicates.

A signature can be compared to a description of a class without any member
functions. It contains a set of fields, but these field are treated as relations
to other signatures. These relations are interpreted as sets of tuples of atoms.
Atoms are the smallest possible entities in Alloy, for instance an empty signature.
The parental relation type of a field can be specified using quantifiers: all, some,
no, one, lone. These quantifiers will be used extensively. The semantics of the
quantifiers will now be explained.

some X
There is at least one entity of signature X.

no X
There are no entities of signature X.

one X
There is exactly one entity of signature X. If there is no quantifier specified,
the one quantifier is used.

lone X
There are either zero or one entities of signature X.

all x: X | formula
Every entity x of signature X satisfies the formula. If there are no entities
in x then this statement is trivially true.

some x: X | formula
One or more entities x of signature X satisfy the formula. If there are no
entities in x then this statement is also trivially false.

no x: X | formula
Exactly zero entities x of signature X satisfy the formula.

one x: X | formula
Exactly one entity x of signature X satisfies the formula.

lone x: X | formula
Either zero or one entities x of signature X satisfies the formula.

A fact is a statement that defines a constraint on the entities of the signa-
tures. A predicate is a constraint that is parameterised and it can be included
in other predicates or facts.

The Alloy Analyzer provides analysis by searching for instances of a model
written in Alloy. Not only can it find instances, it can also check if assertions are
satisfied or violated. Both capabilities are achieved by an automated translation
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of the model into a Boolean expression. The Boolean expression is then analysed
by Satifiability (SAT) solvers.

The user can specify a scope on the model elements to bound the domain.
The analysis is then performed within that scope. Jackson (2006) provide more
information about analysis within scopes. More information about Alloy is
given by Jackson (2006) though the previous description of Alloy suffices to
understand the rest of the paper.

To apply the transformation to an Alloy model, a button was added to the
formalism (see Figure 6). Since every drawn feature diagram is legal, the trans-
formation will terminate correctly. The user will only need to input a pathname
to where he wants to save the transformed model. No other information is
needed.

4.1.2. Rules to Transform the AToM3 Model to Alloy

Since the domain of Alloy is different than the domain implied by the meta-
model introduced in section 3, a set of rules have to be constructed. These rules
will form the transformation process. It is of course possible to create another set
of rules that construct a different model out of the same input model. Depending
on the goal of the transformation a different set can be choosen. For this work
the only goal was to create an Alloy model to perform some useful analysis.
Therefore the chosen set of rules was the set that constructs an easy to read
Alloy model that preserves almost all information of the input model without
being too much work to implement.

First a model name needs to be created because this is required in an Alloy
model. When the original feature diagram has a name, the Alloy model will
have the same name. When there is no name, a model name will be constructed
from the filename of the model. Then additional information about the model
is added in comment: the author, the date created and the description. When
the original model doesn’t have an author or description, this information will
be omitted.

Now for the hard work. Features and concepts are transformed into signa-
tures with the same name. Their fields indicate the relations to the sub-features.
The name of a field will be the lowercase version of the name of the feature.
If a mandatory sub-feature is not in a set it will get the default relation type
one. Every other sub-feature will get the relation type lone. If an alternative
set contains an optional feature the relation type for the set is lone, otherwise
the relation type for the alternative set is one. This extra refinement is imple-
mented as fact of the signature. If an or set doesn’t contain an optional feature
the relation type is some, else nothing more has to be specified by using the
normalization property from subsection 2.2.

The information of whether a signature represents a feature or a concept
can be implied by the complete set of signatures. Although Alloy doesn’t need
an ordering on the declaration of signatures, the signatures are ordered on the
number of fields. Since signatures with lots of fields will probably contain fields
with a relation to signatures with less fields (this is when modelling in a struc-
tured way), ‘emptier’ signatures will be declared first. Thus the readability of
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the model is improved.
Since constraints in the feature diagram are modelled in Alloy, these are

quite easily put in the Alloy model. They are transformed into facts with the
same name as the constraint, and as constraint just the same text as in the
feature diagram.

4.1.3. Added Analysis Support

For every concept a predicate is added which allows the user to create a
representation of the feature model using the Alloy Analyzer by using the run
functionality. This will make the Alloy Analyzer try to find instances that
comply to the predicate. An additional predicate NoOrphanFeatures is also
added which will make sure no entities of signatures are considered that don’t
have a parent. For example an engine that is not part of any TrafficCar or
TrafficTruck will not be part of the domain. Since this is not a requirement for
every analyzer of feature models and might even be a useful side-effect of the
transformation to Alloy, this constraint is put in a predicate. If the analyzer
wants to use the predicate as a constraint on the domain, he will need to put it
in a fact.

To show how to perform some operations of analysis on the feature model,
extra assertions are automatically added to the transformed model.

First the operation of determining the satisfiability of the feature model will
be explained. When an assertion is created in Alloy, the Alloy Analyzer will
try to violate it in every possible way. So the method used to see if a feature
model contains a product is to say to the Alloy Analyzer ‘you can NOT create a
product’. The Alloy Analyzer will accept the challenge and try to find a counter
example. If it finds a counter example, it means that the Alloy Analyzer can find
a product and thus the feature model is satisfiable. If it cannot find a counter
example, it means that the feature model will most likely contain a concept that
does not describe any products. Not only answers this method the satisfiability
question, it also provides a nice way to find products.

Dead features are dealt with in the same way. An assertion is made stating
that there can NOT be a product containing that feature. The Alloy Analyzer
will again accept the challenge and try to find a counter example. If it finds a
counter example, it means that the feature is part of some particular product
or products. If it doesn’t find any products containing that feature it is most
likely that it is a dead feature. To create every possible path of every concept
to the feature investigated takes quite some time. Therefore an optimization
is done using the NoOrphanFeatures predicate. This method also provides an
easy way to find products containing a certain feature.

4.1.4. Characteristics of the Model Transformation Language

In this subsection the transformation characteristics from the transformation
to Alloy will be briefly discussed based on the feature model from Czarnecki and
Helsen (2006). Figure 8 represents the feature model for the characteristics.
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Figure 8: Feature model of the characteristics of the Model Transformation Language.

Specification
The transformation has one precondition: that the input is legal with
regard to the AToM3 formalism. But since one cannot drawn illegal models
there is no need for such a precondition. The postcondition is that the
transformation is terminated and succeeded, which of course cannot be
checked in execution since it would imply rewriting almost all of the logic.

Transformation rules
The transformation units are defined as methods from the class Trans-
formerFM2Alloy. The rules are already discussed in section 4.1.2.

Rule application control
The rule application strategy is deterministic. The order is defined by the
calls made from the first method called till the last method called.

Rule organization
The rules are coded to be very reusable. There was no need to make the
methods more modular then they currently are.

Source-target relationship
The target model is a new Alloy model. The source model is the AToM3

model that complies to the feature model formalism from section 3.

Incrementality
Currently there is no support for an incremental transformation. If the
original feature model is updated, a new transformation to Alloy is re-
quired.

Directionality
Currently the transformation is unidirectional: from a feature model to
an Alloy model. It is possible to make it multidirectional.

Tracing
There is no dedicated support for tracing. This would also be hard (even
quite impossible) to implement because Alloy wasn’t made to support
tracing.
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4.1.5. Analysis of a Traffic Model

As an example the feature model of Figure 7 is transformed into an Alloy
model. This is done simply by clicking on the TransformToAlloy button. On
the following three pages the transformed model is presented.
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/*
Author: Thomas De Vylder

Date: 2011-04-12

Model: TrafficModel

Description:
This is a simple traffic model. It contains a TrafficCar, 
a TrafficLight and a TrafficTruck modelled with feature models.
It is an easy example to show most of the functionality. 

*/

module TrafficModel

/*------------------------------The Feature Model------------------------------*/
//------------------------------Concepts and Features------------------------------
sig Chassis { }

sig Fast { }

sig Lights { }

sig Manual { }

sig Slow { }

sig Display { }

sig ULV { }

sig IntegratedGPU { }

sig Automatic { 
computer: Computer

}

sig Transmission { 
automatic: lone Automatic,
manual: lone Manual

}
{ one ( automatic + manual )
}

sig TrafficLight { 
lights: Lights,
computer: Computer

}

sig Engine { 
fast: lone Fast,
slow: lone Slow,
transmission: Transmission

}
{ one ( fast + slow )
}

sig Computer { 
display: lone Display,
integratedGPU: lone IntegratedGPU,
uLV: lone ULV

}
{ some ( display + integratedGPU + uLV )
}
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sig TrafficCar { 
engine: Engine,
chassis: Chassis,
lights: lone Lights,
computer: lone Computer

}

sig TrafficTruck { 
computer: Computer,
chassis: Chassis,
lights: Lights,
engine: Engine

}

//------------------------------Constraints------------------------------
fact SomeMarioLogic {

one Fast implies one Automatic
one Automatic implies one Fast
one Manual implies no Fast

}

fact TrafficTrucksAreSlow {
all t: TrafficTruck | no t.engine.fast

}

/*------------------------------Extra Assertions------------------------------*/
-- determining the existence of the dead features

-- assertion should better be invalid
assert EngineIsADeadFeature {  NoOrphanFeatures implies no Engine }
check EngineIsADeadFeature

-- assertion should better be invalid
assert ChassisIsADeadFeature {  NoOrphanFeatures implies no Chassis }
check ChassisIsADeadFeature

-- assertion should better be invalid
assert FastIsADeadFeature {  NoOrphanFeatures implies no Fast }
check FastIsADeadFeature

-- assertion should better be invalid
assert LightsIsADeadFeature {  NoOrphanFeatures implies no Lights }
check LightsIsADeadFeature

-- assertion should better be invalid
assert ManualIsADeadFeature {  NoOrphanFeatures implies no Manual }
check ManualIsADeadFeature

-- assertion should better be invalid
assert SlowIsADeadFeature {  NoOrphanFeatures implies no Slow }
check SlowIsADeadFeature

-- assertion should better be invalid
assert AutomaticIsADeadFeature {  NoOrphanFeatures implies no Automatic }
check AutomaticIsADeadFeature

-- assertion should better be invalid
assert TransmissionIsADeadFeature {  NoOrphanFeatures implies no Transmission }
check TransmissionIsADeadFeature

-- assertion should better be invalid
assert ComputerIsADeadFeature {  NoOrphanFeatures implies no Computer }
check ComputerIsADeadFeature

-- assertion should better be invalid
assert DisplayIsADeadFeature {  NoOrphanFeatures implies no Display }
check DisplayIsADeadFeature

-- assertion should better be invalid
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assert ULVIsADeadFeature {  NoOrphanFeatures implies no ULV }
check ULVIsADeadFeature

-- assertion should better be invalid
assert IntegratedGPUIsADeadFeature {  NoOrphanFeatures implies no IntegratedGPU }
check IntegratedGPUIsADeadFeature

-- determining the satisfiability of the feature model

-- assertion should better invalid
assert TrafficTruckIsNotSatisfiable { no TrafficTruck }
check TrafficTruckIsNotSatisfiable

-- assertion should better invalid
assert TrafficCarIsNotSatisfiable { no TrafficCar }
check TrafficCarIsNotSatisfiable

-- assertion should better invalid
assert TrafficLightIsNotSatisfiable { no TrafficLight }
check TrafficLightIsNotSatisfiable

/*------------------------------Extra Predicates------------------------------*/
pred NoOrphanFeatures {

all feature: Engine | (some parent: TrafficTruck | parent.engine = feature) or
(some parent: TrafficCar | parent.engine = feature)

all feature: Chassis | (some parent: TrafficTruck | parent.chassis = feature) or
(some parent: TrafficCar | parent.chassis = feature)

all feature: Fast | (some parent: Engine | parent.fast = feature)
all feature: Lights | (some parent: TrafficTruck | parent.lights = feature) or

(some parent: TrafficCar | parent.lights = feature) or
(some parent: TrafficLight | parent.lights = feature)

all feature: Manual | (some parent: Transmission | parent.manual = feature)
all feature: Slow | (some parent: Engine | parent.slow = feature)
all feature: Automatic | (some parent: Transmission | parent.automatic = feature)
all feature: Transmission | (some parent: Engine | parent.transmission = feature)
all feature: Computer | (some parent: TrafficTruck | parent.computer = feature) or

(some parent: Automatic | parent.computer = feature) or
(some parent: TrafficCar | parent.computer = feature) or
(some parent: TrafficLight | parent.computer = feature)

all feature: Display | (some parent: Computer | parent.display = feature)
all feature: ULV | (some parent: Computer | parent.uLV = feature)
all feature: IntegratedGPU | (some parent: Computer | parent.integratedGPU = feature)

}

pred ShowOnlyConcepts { NoOrphanFeatures }
/*Note:  OnlyConcepts is true for most
cases, but in case it's a general graph the 
pred NoOrphanFeatures is not sufficient to
show only concepts (some groups of features
could not be connected to a concept)*/
run ShowOnlyConcepts

pred ShowOneOfEachConcept { 
NoOrphanFeatures
one TrafficCar
one TrafficTruck
one TrafficLight

}
run ShowOneOfEachConcept
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Using the Alloy Analyzer one can easily perform analysis on this model.
Using the auto generated predicates and assertions products can easily be found
so the feature model is satisfiable. An example of a product with one instance
for every concept is given in Figure 9. This figure was made by running the
generated predicate ShowOneOfEachConcept.

Figure 9: A representation of one instance per concept of the traffic model found by the Alloy
Analyzer.

Of course other analysis can be performed. Using the auto generated asser-
tions one can show an example concept for each feature, so there are no dead
features. The constraint SomeMarioLogic is a bit confusing. One might think
that this constraint holds for every individual product, but the Alloy Analyzer
will create a world (called univ) in which multiple instances can exist. There-
fore the constraint will hold for every set of products. If the intent was that the
constraint should hold on every individual product, doing specialized analysis
becomes harder. For example an assertion to show that every TrafficTruck has
a manual transmission will look like the following.

NoOrphanFeatures and no TrafficCar and one TrafficTruck implies
all t:TrafficTruck | some t.engine.transmission.manual

So if the intent is that the constraint SomeMarioLogic should hold for every
instance of a product, this will show that Automatic is a dead feature for concept
TrafficTruck. This simple example illustrates that writing constraints for feature
models in Alloy can be quite toilful.

4.2. Facts and Remarks

One can immediately see that there is a lot of potential. With just two
simple assertions that are automatically generated by the tool, four operations
of analysis can be performed. Since this research only had a limited amount
of time, no further investigation has been performed, though some interesting
remarks can already be made.

1. Alloy is based on first-ordered logic. Feature modelling tries to make life
easier by abstracting away the details. It provides a very simple tech-
nique to describe programs and products. People with no mathematical
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and programming background can understand and perform feature mod-
elling. When using Alloy to perform analysis, the user will need a good
understanding of the first-ordered logic, so the basic knowledge a person
must have to perform feature modelling becomes larger, and thus Feature
modelling becomes less attractive to the general population.

2. The Alloy Analyzer provides a lot of analysis support. Though it comes
with a few pitfalls. For instance the performance of the Alloy Analyzer is
decreased by the extensive use of integer types in a model. Furthermore
the depth and value of the analysis will be limited to the functionality
that is presented by the Alloy Analyzer.

3. The domain represented by the transformed model might be too precise.
Though the transformed model is still on a very abstract level, informa-
tion must be added. An nice example of such information is the decision
whether or not two instances of a concept must have a separate instance
for each feature. Another exemplar decision is whether or not an instance
of a feature can exist without belonging to any concept instance. Such in-
formation must be added to the Alloy model in order to be able to perform
analysis.

4. The domain represented by the transformed model might be too imprecise.
Some information is lost when transforming the model. For instance the
priority of a concept or feature. One might add this information as com-
ments in the Alloy model but even then the information is not used by the
Analyzer and thus not considered when performing analysis. So the key
to remember is that one must be very careful when removing information
during the transformation to another representation.

5. The two previous points can be seen as a warning to the analyzer. When
performing analysis on the transformed model, one must be very careful
when mapping the gained information back to the original model, since
the analysis is actually done on a different model.

5. Conclusion

In this paper a survey of feature modelling was presented. Feature mod-
elling provides an easy way to describe families of products. It is vital that a
feature modelling tool allows formal analysis. A tool to design feature models
is presented that uses AToM3. Besides designing feature models it also allows
a transformation to the Alloy language so that the Alloy Analyzer can be used
to perform analysis. Already some basic operations of analysis are provided:
determining the satisfiability, finding a product, determining dead features and
finding products containing certain features. The contribution of this work is
limited to the capabilities of the used tools: AToM3 and the Alloy Analyzer.
Although the set of capabilities of the presented tool are quite small, it can
be useful for small to medium sized product families. Moreover the insight
gained from developing and working with it can be a good starting point when
developing a full fledged feature modelling tool.
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6. Future Work

It can be very interesting to extend the capabilities of the tool. Since it is
programmed in a structured way, new functionality can be easily added. There
are countless possibilities to extend this work. The eight most important ones
are listed below.

1. AToM3 only provides a limited amount of space to design models so it is
very interesting to add support for collapsing features and concepts. This
way large and complex feature models can still be easily representable.
It might be interesting to then add functionality to import and export
collapsed features in order to encourage reuse of models.

2. Currently the constraints are modelled in the textual modelling language
of Alloy due to the limited time of the research. Providing a more suitable
language (textual or visual) for feature models can be a great improvement
to the tool. Similar work is done by Taentzer (2002) who introduced a
visualization of the Object Constraint Language (OCL). It might also be
useful to look at the high-performance reflective language Maude of Clavel
et al. (1993).

3. There are already a lot of analysis operations provided. Adding more
operations will only improve the depth and value of the analysis. It might
also be interesting to research the limits of the analysis performed in Alloy.
For instance counting the number of products in a family is not that trivial
and in large complex families this will probably take too long.

4. For now every analysis operation currently available is automatically gen-
erated when transforming the model. It might be handy to have a menu
in which the user can select which operations need to be generated. It
can even be more interesting to perform the analysis of Alloy in the back-
ground of AToM3. This way the transformed model is not seen by the
user. The user doesn’t even have to understand Alloy to perform the
analysis.

5. The transformation to Alloy does not consider comments and other meta-
data (descriptions, clients and stakeholders, etc.). This information can
be of great importance during the analysis so providing rules to transform
this information is very interesting.

6. Functionality could be added to the formalism so that a feature diagram
can be normalized (see section 3). This does not require a lot of work and
can be very useful.

7. Currently a concept or feature can only have one edge to a feature. In
most cases this is required, but in some cases it might be interesting to
provide this functionality but then a lot of adjustments will be necessary.

8. The transformation process currently is unidirectional, does not support
incremental changes and does not allow tracing. Adding support for these
three features would make the current implementation even more useful.
For example if one would see a problem by inspecting the Alloy model, one
could change the Alloy model directly and then the feature model could
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be updated automatically. However for this research these features were
not required.

All this functionality will be of more value when feature modelling is more
widely used, since one learns best from practical examples. This will also en-
courage the SPL community to make standards. It would for instance be very
handy if a common constraint language would be created in which designers can
very easily model cross-graph constraints.
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