Modelling and Transformation

Statechart Modelling of Computer Controlled Characters

Overview

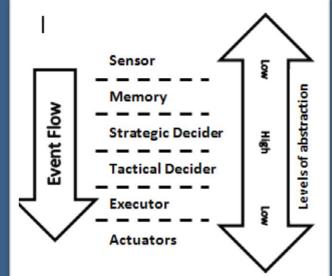
2

- Introduction
- Specifying NPC behaviour
 - About the game
 - Specifying in statecharts
- Using the statecharts
- Conclusion
- Demo
- Question

6

INTRODUCTION

SPECIFYING NPC BEHAVIOUR



About the game

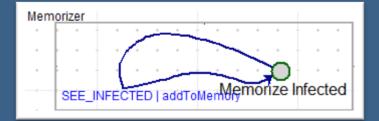
- Humans vs Infected
 - Infected dies after 100s
 - Human becomes infected if touched
 - Last man standing
 - Humans run away, Infected chase

Different abstraction levels

- Based on [1]
- Allows for modular statecharts
 - Keeps them interchangable
 - Reusable
 - Simple,
- Statecharts made in atom³

[1] - Model-Based Design of Computer-Controlled Game Character Behavior - Kienzle, Jörg, Denault, Alexandre, Vangheluwe, Hans – 2007 - Springer Berlin / Heidelberg

Sensor

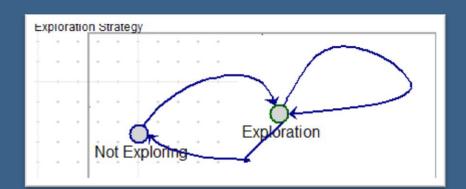

- Eyes
- Same for healthy and infected
- Event generated if something is spotted

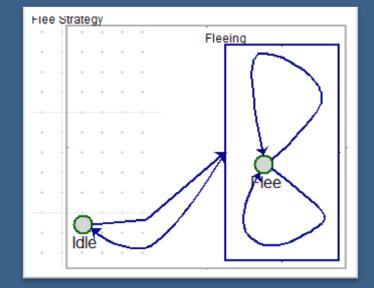
Memory

- Well... Memory
- Remembers where we saw something

Strategic Decider

9


- Behave in a certain way
 - Because of certain events
- Different for healthy and infected



Tactical Decider

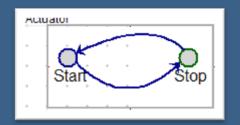
• Specifying each behaviour

- How do I attack? Flee?

Executor

11

I'm exploring...what do I have to do?
Translate behaviour into actuator events



Actuator

12

- Feet
 - Moving or not?

Putting it all together

- All orthogonal components
 - Put together in one composite component
- Allows behaviour like:
 - After 100 seconds, die.
 - Independent of what you are doing
 - If touched, become infected
- Obligated because of framework

USING THE STATECHARTS

Universiteit Antwerpen

To python code

- Uses SCC^[2]
- Every entity represented by actor
 - "Attach" compiled statechart to actor
 - Updated every pass of main loop (±33 ms)
 - Has to be finished!
 - Game hangs if not
 - Did not happen in this case..

[2]: Thomas Huining Feng – SCC -http://msdl.cs.mcgill.ca/people/tfeng/uml/scc/

Timing issues?

- Statechat can "miss" events
 - For example: reaching a waypoint
 - Normally: If reached, next loop detected
 - But: Takes 2 or 3 loops
 - Entity keeps moving..possibly no longer at waypoint
- Possibly caused by framework?
 - If no timing specified on guards: Hangs

Solution?

- Generate event in code
- Correct the deviation
- Just take it into account when designing
 - Avoid the problem!

17

CONCLUSION

- Easier to develop
 - Can be used by non-programmers!
- Higher abstraction
 - No knowledge of specific algorithms needed
- Reusable
- Easy to adapt
- Easy to represent complex structures and interactions

Cons

- Still code needed for specific algorithms
 - Maybe the algorithm can be represented on a higher level?
- Scalable: 50 entities made the game crash
 - Depends on the framework used?

Do what when?

- Made the mistake: coding first, statecharts later
 - Should have been the other way around!
- Where do statecharts stop and does code begin?

21

Conclusion

- Very usable for this type of problem
 - Some quirks, but can be solved

How we are all going to die.. DEMO

Thank you for your attention. **QUESTIONS?**

Universiteit Antwerpen

