
1

MODEL DRIVEN
ENGINEERING

Simulation-based performance evaluation of PacMan NPC's

Can Babek Ilgaz

2

 About the game

• Introduction

• Specifying NPC behaviour

• About the game

• Specifying in statecharts

• Using the statecharts

• Simulation

• Conclusion

• Demo

• Question

3

INTRODUCTION

4

SPECIFYING NPC
BEHAVIOUR

5

 About the game

• PacMan

• PacMan dies if touched

• PacMan eats apples and score gets incremented

• PacMan can not move to a tile occupied by an obstacle

• PacMan eat apple, Ghosts chase

6

[1] - Programmed Graph Rewriting with Time for Simulation-Based Design – Eugene Syriani and Hans Vangheluwe

 Statecharts

• Based on [1]

• Allows for modular statecharts

• Keeps them interchangeable

• Reusable

• Simple

• Statecharts made in atom3

7

 Sensor
• Eyes

• Same for Ghosts

• Event generated if PacMan sighted

8

 PacMan

• Controlled by User

• If in 2 seconds no key pressed moves randomly

9

 Putting it all together

• All orthogonal components

• Put together in one composite component

• Allows behaviour like:

• After 2 seconds, move random tile.

• If PacMan seen start chasing

• If key pressed, go back to a different state

10

USING THE STATECHARTS

11

 Python code

• 3 different entity

• Updated every pass of main loop (±30 ms)

• Game hangs if not loop finished

12

 Timing issues?

• Statechat can “miss” events

• For example: seeing PacMan

• Normally: If reached, next loop detected

• But: Takes 2 or 3 loops

• Ghosts keeps moving but on wrong state

13

 Solution?

• Correct the deviation

• Generate event in code Just take it into account when
designing

• Avoid the problem!

14

 Simulation

y - Game lasting time

x - Playing count

15

 Simulation

y - Playing count

x - Ghosts’ reaction time

16

CONCLUSION

17

 Pros

• Easy to develop

• Can be used by non-programmers!

• Higher abstraction

• No knowledge of specific algorithms needed

• Easy to adapt

• Reusable

• Easy to represent complex structures and interactions

• Easy to read

18

• Sometimes after a few steps game crashed

• Simulation with the current code generation simulation is
not so obvious

 Cons

19

 Do what when?

• Where do statecharts stop and does code begin?

• Made the mistake: coding first, statecharts later

• Other way around!

20

• Very usable for this type of problem

• Some mistakes but can be solved

 Conclusion

21

DEMO

How we are going to beat Ghosts

22

QUESTIONS?

Thank you for your attention.

