oy

Modelling of NPCs

With the use of interacting statecharts

Universiteit Antwerpen —

U- Overview

e Why statecharts?
e Related work

e My contribution

e Conclusion

Universiteit Antwerpen _

Why Statecharts?

Universiteit Antwerpen _

U- Turn Based Games

e Popular examples include computerized board
games like Chess and Connect-Four

e Game state does not change until a player
makes a move

e Waiting several seconds for (computer-
controlled) opponent is acceptable

e "Simple” algorithms within programming
language suffice

Universiteit Antwerpen _

U- Real Time Games

e Examples : your favorite FPS or MMORPG
e Game state changes continuously

e Goal : make NPCs’ actions and reactions look
as intelligent and natural as possible

e More realism when NPC can :
- Analyze situation
- Evaluate different options
- Take into account game history

- Writing consistent, re-usable and efficient Al
code becomes very hard

Universiteit Antwerpen _

U' Solution

e Specification of such advanced Al should not
be done within programming language

e Instead : higher level of abstraction using
visual modelling language

e Main focus in Game Al is to define reactions to
game events

- An Event based formalism like Statecharts
seems appropriate

Universiteit Antwerpen _

Related work

Universiteit Antwerpen _

oy

Model-Based Design Of Computer-
Controlled Game Character Behavior

by Jorg Kienzle, Alexandre Denault & Hans Vangheluwe

Universiteit Antwerpen _

: Sensors

T
=]
@
L=
m
T

mn>

ybiH
Lewvel of Abstradion

<ME=1;|1UEM§|
m
b
e
&
=
=]
T

Actuators

g
=
[
2
=
=
2
I
(e

The layered architure of the AI model

As described in the paper “Model-Based Design Of
Computer-Controlled Game Character Behavior” by Jorg
Kienzle, Alexandre Denault & Hans Vangheluwe

Universiteit Antwerpen _

U— Architecture

e Character perceives the environment
through his sensors

e a® Input gets transformed by
"""""" . components from the layers

Eventually reaction by the actuators

e Communication with asynchronous
e ¥ events (event flow downwards)

e Example : Detecting obstacle
- turning left to avoid collision.

|
=, @,
-
= 1
=18 ‘-;“.ug
(] - [|
E1 919013
S0 8%
[/ 4] % % Ia
a |
&n a |
ybiH
Level of Abstradtion
o

Universiteit Antwerpen _

U- Sensors

e Extract information from the state of
the tank (evolves continuously)

ensors . * Send events accordingly
| naviers Lg

e Example :

|
=, @,
m rd iz
= 1
=18 18 5
(] - [|
E1 919013
S's '8 'k
=1 |
[/ 4] % % Ia
a |
&n a |
ybiH
Level of Abstradtion

o
[=]
[=]
g
=
)
[=]
@
G

Mon 'm’T””k,-"f [fuslLaval < 10%] / fuslLow

Actuators
e
.—}[FuelLevel-DHJ FuelLow]
.

[fusllevel = 100%)] / fusiFull

Universiteit Antwerpen ‘

U- Analyzers

e Detect significant events that can
only be calculated based on the state
of several components

w7 ® ExXample - To determine whether the
enemy is in range, information from
the turret and the turret radar is

|

=, @,

SEE

= 1

818

S 219

[=ICI TR

#® 5 E.I

318

@

ybiH

Level of Abstradtion

Coordinators g needed u
Actuators \/
InHangeDetectm/ [turretRadar enemylinFront() &&
turretRadar enemyDistance <= turret.range] / readyToShoot
.e-[Seeking] [InRange]
after(1)]

Universiteit Antwerpen —

U— Memorizers

e Pilot takes events/state from the
past also in consideration

- Memory needed

Memorizers |||z o Example — Enemy Tracker
T:jfjfﬂf remembers enemy position, even
| B i when it got out of sight :
“?ZEEE?“ \i/ IT'““*‘E"B”“'/ "’ EnemyPosKnown
snemySighted — enemySighted

-:HT lZ:il{I‘F..'-l:]irf-:h ET cked |

L ra rﬂ

®—{Noznemy | | | gyihaer | (ByoRadars
enamy | — @

[Lost | enemylost

enamySighted ‘-,h_j*'

EnemyPos | [enemyMaved] /
Unsure) anemyPosChanged

L8

Universiteit Antwerpen —

H- Strategic Deciders

e Deciding on a high level goal

e Strategies : Exploring, Attacking,
A Repairing, Fleeing, Refueling

Analyzers
" Memorizers B | PilotStrategy /
———————————— e - -
i g . EnoughFuel
Strategic ||5 damagakigh — 100 > -
Tactical Deciders = s . \ i Track
____________ = NormalOperation 1 [repairTracker. | [not repairTracker.
i irPosk
___Ex_efu_t?r_s___ % [emamyTracksr.enemyPozknown &8 rEIFm'rF.':'“EIHrI':I""""-']I".I repairFoztnown] |
Coordinators g not fusiTank. lowFus] Yy W
____________ \/ I'—\ . -
Actuators @ Exploring —;r‘ Attacking \ Repairing ‘ Flesing |
\Tﬂ' b -
\\] i\-‘_r_ ?"ET__’_P// [rap?aFTE:_:l-;ar. I:H_:I
‘,.-" = rapairPoeknown] f

-’/,fI.IEHFLI"

\'___h ﬁnm fuel Tracker_fuslPosKnown]
—
fusiLow [fusi Tracker fuslPosKnown]

Universiteit Antwerpen _

:=-| Refueling -

oy

Sensors

Actuators

Universiteit Antwerpen n

ybiH
avel of Abstraction

G
L

Tactical Deciders

e Translate high level goals into low
level commands

e Each strategy should have his own

planner.

]
AttackSirat /
rareay | attack |

nigw Dastinaton(smnarmy Tracksr.

W
axplore -ﬂm?mmi aimAL(...)
o

| MovementAimingAndShooting
Follow
® (Enemy]

enamyPosChangsd /
newlastinationsnemy Tracker geiEnemyPoa()); aimAt]..)

readyTaShoot | shoot

l::-L Ready | snuming|
7

after{tima ToRaload)

Planner for the attack strategy

Universiteit Antwerpen —

H— Executors

e Map the decisions to events the
actuators can understand

Sensors
_ Analyzers Zg\ Et-aarinQEtmt-ag}.r‘;" [
___M_e[nl:-[izlezs___ = c | :|_ﬂ;gr|:“ > Fﬂh‘l‘ﬂrd
Strategic Deciders _ g newWaypaint /{'_ Backward
Tactical Deciders (5 (2 Ilf‘:" | [wpAhsad()] [wpSshind(]]
Executors % | | forward / backward
Coordinators \g/] ‘ l"'l
"""""" Left
Actuators . = I dl'l.:'.- -
L J | [Right
i | .
Tl | [wplafit()] : [wpRighti]]
I'__ .|/ umlef / turmn Right
[woRsached(] \& T
! waypointReached . Wait
AndSee
L. A

Universiteit Antwerpen ‘

U- Coordinators

e Handle incorrect behaviour when the
effects of actuators are correlated

e Example : Simultaneously turnin
Analyzers Zo—\
w5l tank and cannon
Strategic Deciders. Ig
_Tactical Deciders ‘Eg TunatTarI-;r-.'l::-'.'arrantC'-::-urdlnntc-r
Executors z .
____________ 3 [reachTumlbLsft{) =
Coordinators <&/ [T,’TL’}EE;T:.?{’.‘,E’ reachTumRight(]] /
Actuators -:,H ‘)r'f_ turrstTurnRight
. Turning Turmning |
e] Csay | (TR
_ _
[raanurnL.aft-:] = [facingEnemyi)] /
reachTumBRight(]] / wrretStopTum
turretTurnLaft

Universiteit Antwerpen —

U- Actuators

e Execute the low level commands
such as turn left or move forward

Sensors

 nayzers /0\
LR 2 Mnmr::.nmmy" Mutnrslate]
Memorizers s T Right
------------ um
Strategic Deciders - g StﬂF' turn |'EI
Tactical Deciders ‘E § -H:u
oo 2 Turning Going Turnlng
Xeculors
____________ L Left Stralght lghl
Coordinators \g/
Actuators - mngﬁ stu::pTum
stop $ backward
£ Ny Yy
Moving | Moving
@% Stopped Back |
L forward siop)

Universiteit Antwerpen —

My contribution

Universiteit Antwerpen —

H- Example Game : Paper Warfare

X

Paper Warfare

Q ‘

& Azerty

" Qwerty

'

Ready

Press P to Play/Pause

Steering :
Azerty = Z+S+Q+D
Qwerty = W+S+A+D

Cannon :
Rotate = Left + Right Arrow
Shoot = Up Arrow

Universiteit Antwerpen ‘

Hv Modelling

e As modelling environment AToM?3 is used, in
combination with the DCharts formalism and

statechart compiler of Huining Fen
[2] AToM3, http://atom3.cs.mcgill.ca/

[3] H. Feng, DCharts, a formalism for modeling and simulation
based design of reactive software system,

http://msdl.cs.mcgqill.ca/people/tfeng/thesis/thesis.html (2004).
e User Interface with Tkinter

Universiteit Antwerpen _

H- Modelling

e A component with modelled behaviour consists
out of :

- A dynamic part : The statechart

- A static part : Implements certain functionality
which can be called by the statechart

- A controller : For communication between the two
parts

e Next to the NPCs, also other elements with
modelled behaviour

e Should we model everything we can model?

Universiteit Antwerpen _

H’ Environment

e Field repeatedly updates all objects in game
e.g. Bullet movement and collision detection

- Would a separate statechart for a bullet be
beneficial ?

e Pausing/resuming displays/hides a message

Setup
Field

start

Lpdate
pausePressedihideDisplay() o
Paused » H AFTER{updateTimeyupdateGame()

resume

pausePressedishowDisplayl)

Init

Universiteit Antwerpen _

lj- Player

e Comparable to the executor & actuator layers of the
Al -> input from the user is translated into actions

e Example — When the right arrow key is pressed the
event “keyCannonRPressed” will be generated,
resulting in the cannon turning right :

Cannan

keyCannonRPressed

o spl FHeleased -
of CMNone Foht
keyCannonRReleased

keyCannonLPressed

moveturnCannonRight
- moveiturnCannonLeft() g II}'_

kqyCannonRPressed
keyCannonLPressed

keyCannonRReleased keyCannonLReleased

o
CBoth

Universiteit Antwerpen —

> Non-Player Character

e Same layered approach as paper in related
work but different target game and platform

e Only interesting components will be shown
(lots of trivial and similar components)

Universiteit Antwerpen —

H- Enemy Detection

e If enemy present, send “enemySighted” event
and progress to EnemySighted state

e In this state keep checking for enemies, if no
more enemies are present, send
“enemyOutOfSight” event.

Radar _
[enemyPresent()ienemysig

NoEne emysighted

[not enemyPresentfienemyl

Universiteit Antwerpen -

‘j- Enemy Tracker

e Memorizer to pinpoint the enemy’s position
e Repeatedly update position of enemy

e If enemy out of sight and no waypoint left to
travel to > Enemy lost, continue exploring

TrackEnemy :
AFTER(reactionTime)checkEnemy()

enemyoutOfsight

enemy3ighted enemysighted

EnemyPosUnsure |

[not morePoints()enemylLost

Universiteit Antwerpen _

> Path Finder

e Determines route using waypoints when
“newDestination” event comes in

e When point reached, checks if more points are
left. If so, a “"newPoint” event is send, else a
“destinationReached” event.

Fathfinder

[not morePoints()/destinationFeached
newDestination/calculatePath(/newPoint

)

mareFoints{newFoint :
| pl Fathfinder |dme

PointReacl

pointReached

Universiteit Antwerpen _

H- Steering Strategy

e This executor shoots in action when a new
target point is set

e Checks where that point is located in relation
to itself and propagates events accordingly.

SteeringStrateqgy .
newPoint oteering_ldle [pointReached(pointReached
Steering

_ _ [pointLeft(lturnLeft [pointRightCannon(fcannonRight
[pointBehind(lstop

[pointRight{turnRight SnnonCormecsopCannony

ee

[pointdhead(jiforward [pointLeftCannon()\cannonLeft

[pointStraight(istopTurn

AFTER(reactionTime)

Universiteit Antwerpen _

Uv Cannon Coordinator

e Next to enforcing the desired behaviour of the
cannon, it also attempts to reset the cannon
to a zero angle difference with the tank when

the attack state is left.

.

annon_|dle

enemy3ighted

nnnnnn Right

Universiteit Antwerpen ‘

Demo Time

Universiteit Antwerpen _

Conclusion

Universiteit Antwerpen _

U' Conclusion

e Statechart modelling = good way to obtain
structured and easy-to-understand Al

o Usefull in other cases where keeping track of
state is needed (e.g. what key is pressed /
pausing game)

e Degrades performance - Structure,
Consistency & Re-usability vs. Performance

e (Tkinter is not well suited for games)

Universiteit Antwerpen _

Any questions?
Thank you for listening

Universiteit Antwerpen _

