Modelling of NPC’s as interacting Statecharts

Glenn De Jonghe
Master Student Software Engineering at University Of Antwerp

Abstract

Since video games nowadays got more complex, writing consistent and
re-usable code for game Al has become very hard. In this paper we will look
at the modelling of Non-Playable Characters using the statechart modelling
language and will see that this method has many advantages. This is shown in
a small tanks game, developed for the purpose of this paper, where the player
has to battle one or more NPC tanks with statechart-modelled behaviour.
We will also inspect if modelling other components of the game has any
benefits. For instance a completely modelled environment would make it
possible for the NPC’s to interact with it solely using events.

Keywords: Model Driven Engineering, Non-Playable Characters, Game
Al, Statecharts

1. Introduction

NPC’s in simple games such as board games or old 2D games do not
require much effort to be specified and can be easily done within the pro-
gramming language itself. In modern games however this is not the case.
That’s why we will use a visual modelling language at a higher level of ab-
straction which leads to an easier-to-understand and consistent design.

Game Al models react to events and changes in the state of the en-
vironment, and thus is the statecharts formalism an appropriate modelling
language. As modelling environment AToM?[2] has been used in combination
with the statechart compiler and DCharts formalism of Huining Feng|[3].

As this paper continues we will first look in section 2, at the related work
this paper is based on. In section 3 we will show which components next
to the Al are also accompanied with a model and how we decided this. In
section 4 we will go in more detail about the modelling of the NPC’s and we
end the paper with a conclusion in section 5.

Paper Warfare = [0 x|

& Azerty

" Querty

-

Ready

Press P to Play/Pause

Steering :
Azerty = Z+S+Q+D
Qwerty = W+S+A+D

annon :
Rotate = Left + Right Arrow
Shoot = Up Arrow

2

Figure 1: Screenshot of the game which was developed for this paper.

2. Related Work

The behaviour of the computer-controlled tanks in the example game (see
figure 1) are modelled using the information given in Model-based Design of
Computer-Controlled Game Character Behaviour[l]. In that paper the Al is
modelled using a layered approach as you can see in figure 2.

Sensors

=
=
o
-
@
@

Mn>

Yy
Level of Abstradion

Actuators

o
=]
[=]
3
=
=]
g
@
4*01

Figure 2: Al model architecture

2.1. Sensors and Analyzers

The sensors extract information from the state of the tank, which evolves
during the game. Some games actually model this state in great detail.
These games are typically called simulators where the physical interactions
of the components with the environment are very important. When only the
behaviour of a pilot is desired as is the case here, one can model at a much
higher level of abstraction.

The pilot has access to abstracted information such as the position of the
tank, in which direction the tank is facing, what speed it is going at, and at
what angle the cannon is currently positioned. (Note that in the described
paper, the cannon is called turret.) Furthermore it can decide where an
enemy attack originates from.

A tank pilot (or a computer player) pursues a specific high level goal and
performs actions that work towards the achievement of that goal. High level
goals usually remain the same as long as no significant changes in the tank’s
state or in its environment occur.

Some significant events can only be detected or calculated based on the
state of several tank components, this is done by the analyzers.

2.2. Memorizers

A tank pilot does not only react to current events, but also makes deci-
sions based on events/state from the past. In order to remember interesting
state or events for future strategical decisions, we need to add state to the
model that acts as the tank pilot’s memory. While occurences of events can
be memorized using enumerations and booleans, it can also easily be done
with the use of states a statechart. Remembering complex state however,
for instance geographical information, is less trivial, and usually requires
the construction of an elaborate data structure that stores the state to be
remembered in an easy-to-query form.

2.3. Strategic Deciders

At this point events come in based on the environment, current state
of the tank and memory, which make it is possible to model the high level
strategy of the tank pilot. At the highest level of abstraction, a tank pilot
switches between different operating modes based on events. He starts in
exploring mode, and switches to attacking mode once the enemy position
is known. This can be added with information on fuel level and sustained
damage. If the fuel level is low and the position of a tank station is known, the

pilot will move to there. If none is known, it will have to continue exploring
until it finds one. The same counts for heavily damaged tanks. When during
an attack the sustained damage gets too high, the pilot will flee and look for
a repair station. All these mode changes are announced using events, so the
following layers can handle them.

2.4. Tactical Deciders

The high-level goals sent by the pilot strategy component have to be
translated into lower-level commands that can be understood by the different
actuators of the tank, such as the motor and the cannon. This translation
is not trivial, since it can require complex tactical planning decisions to be
made. In addition, the planning should take into account the history of the
game, which means it needs to consult the memorizers for important game
state or events that happened in the past.

For each strategy there should be a different planner component. The
exploring planner for instance will need to generate destinations to explore,
while the attack planner will try to follow the enemy, aim at it and shoot
it. When new destinations are set, a pathfinder component will use informa-
tion previously gathered concerning the environment to generate an efficient
route.

2.5. Ezecutors

The executors map the decisions of the tactical deciders to events that
the actuators can understand. The mapping of events is constrained by the
rules of the game. A steering component translates the route given by the
pathfinder into events which low level components such as the motor can
understand.

2.6. Coordinators

Executors individually map tactical decisions to actuator events. This
mapping can result in inefficient and maybe even incorrect behavior when
the effects of actuator actions are correlated. In such a case it can help to
add an additional coordinator component that deals with this issue.

For example, while attacking, the turret should turn until it is facing the
enemy tank and then shoot. However, the optimal turning strategy depends
on whether the tank itself is also turning or not.

2.7. Actuators

The actuators are part of the last layer in the event flow. They accept
simple commands such as moving the tank forward or rotating the cannon.

3. Models

A component with modelled behaviour consists out of a controller, a static
part and a dynamic part. The dynamic part is essentially the execution of
the compiled statechart code, the static part contains stored information, and
the controller is an interface to these two. The statechart can update values
of the static part through this interface, while the static part can generate
events for the statechart.

To determine whether it’s beneficial to model a component’s behaviour,
some reasoning and perhaps a simple test suffices. It is important to know
that the performance highly depends on the used statechart compiler and
that you could get very different results with other compilers.

After some testing it seems that Feng’s statechart compiler doesn’t handle
transitions very well if they are only triggered by guards instead of events.
This is rather unfortunate since this kind of transitions is very desired in the
modelling of our Al. The number of NPC’s that can be spawned at the same
time, now highly depends on the specifications of the computer.

Furthermore it was concluded that only providing a model for the be-
haviour of a player controlled tank, a computer controlled tank and the
environment as a whole seems a good choice. In later sections will be showed
why. At any given time where a class is mentioned, it talks about a class in
the example game if not explicitly mentioned else wise.

3.1. Environment

The class TanksField represents the environment. As you can see in figure
3 it repeatedly updates all objects in the game. For example it updates the
position of the bullets flying around as well as collision detection, which
brings up the question again of when to use statecharts. We could’ve easily
made another statechart for the behaviour of a bullet and let it update its
position on receiving a certain event from the TanksField. This gives exactly
the same behaviour as calling a method on the bullet which directly updates it
position, with the difference that the latter is way more performant (imagine
hundreds of bullets each waiting for events) while there is absolutely no
benefit using a statechart.

Setup
Field
start o Update i
pausePressedhideDisplay() }@ AFTER(updateTime)updateGame()

resume

Paused

pausePressedishowDisplay()

Init

Figure 3: Model of TanksField.

Moving on we also see that the statechart is used to pause the game
and at the same time display a message using the call showDisplay() on the
controller. For the reader who isn’t familiar with DCharts in AToM3, gray
boxes are orthogonal states, blue are composite states and a green border in-
dicates the initial state. When we arrive at the tank-statecharts only certain
orthogonal components will be shown since the complete model is too large
and contains many similar submodels.

On a sidenote it should be said that updateGame() should actually send
events to the tanks for updating purposes, but since this truly destroyed
the performance in our example game for some unapparent reason, it is
implemented else wise.

3.2. Player

Cannon

keyCannonRPressed

keyCannonRReleased maoveturnCannonRight()

| moveturnCannonLeft() keyCannonLPressed

kgyCannonRPressed
keyCannonLPressed

keyCannonRReledsed keyCannonLReleased

CBoth

Figure 4: Submodel of PlayerTank which controls the rotation of the cannon/turret.

In PlayerTank happens all input handling that controls the tank. In
figure 4 we see how controlling the cannon works. For instance, when the

6

left arrow key is pressed an event keyCannonL Pressed is generated and will
bring the statechart in state CLeft, which has as meaning that the cannon
is turning left. Now each time a mowve event is recieved the cannon will be
slightly rotated to the left. This move event is used to keep a consistent
speed for moving and turning.

Shoot _
keyShootPressed/shoot |0aded/shoot

SNone keyShootReleasedSPrESSEd

Reload .
shoot/'shoot()

AFTER(reloadTime)loaded

Figure 5: Submodel of PlayerTank which controls the shooting.

In figure 5 we see what happens when the shoot key is pressed, it generates
a shoot event which will call the shoot() method if the tank is not in the
reloading state. If a shot is fired, the tank reloads, and generates a loaded
event when its ready. If the shoot key is still pressed, a new bullet will be
shot.

4. Computer Controller Tank

The Al is modelled using the information gathered from the related work,
which means we will also have the same layered approach. Since some com-
ponents are very trivial or similar to others we will only talk about the more
interesting ones.

In figure 6 we can see how the NPC checks, using info gathered form
the state and sensors, whether or not he can see an enemy and sends an
appropriate enemySighted or enemyOutOfSight event down the flow.

In figure 7 we see a memorizer where the NPC combines information to
pinpoint the position of the enemy. If an enemy gets sighted, we advance
to the Tracked state where we repeatedly check if the position of the enemy
has changed. If so a newDestination event is sent with as destination the

Radar [
[enemyPresent()ienemysig

MNoEne emySighted

[not enemyPresentienemyQ

Figure 6: Radar

new position of the enemy. The pathfinder component, which we will discuss
later, will then generate points through which the tank can arrive at the
destination. If the enemy tank gets lost, the pilot will still move to the last
known location increasing the chance of finding the enemy again. If no more
points to navigate to are left, meaning no more new knowledge about the
enemy has come in, the enemy is considered lost and an enemyLost event
will be generated putting the Enemy Tracker back in the EnemyLost state.

TrackEnemy .
AFTER(reactionTime)icheckEnemy()

enemyCutofsight

enemy3ighted

enemysighted

¥)& EnemyPosUnsure |

' Enemy Tracked

[not morePoints(jenemylLost

Figure 7: Enemy Tracker

In figure 8 we see the Pilot Strategy of our NPC. Here we actually com-
bined the strategic decider with the tactical decider components for planning
exploration and attack. We can see that our NPC starts exploring the map,
generating new explore destinations when the previous one has been reached.

When an enemySighted event comes in the tank will go in attack modus.
From that moment on he will try to follow and aim at the enemy by changing
its target (for the cannon) and destination every time a enemyPosChanged
event comes in. If the cannon is loaded and pointed directly at the target,
a bullet is fired. This goes on until the enemy is lost which brings the tank

8

back to exploring.

PilotStrategy
Attacking
Exploring FollowAndAim i
enemySightad eriemyPosChangedifocusEnemy()

destinationReached

MNoDestinafi Exploring
InewEsxplore() TRETTOT

FollowEnemy

Shooting -
[IN Tracked and cannonCorrect())shoot()

Ready srrer(reloadTime) Shooting

Figure 8: Pilot Strategy

In figure 9 we see the Path Finder component. This tactical decider
determines an optimal route using points when a newDestination event is
received. When receiving a pointReached event the component will look if
there are any more points left in the route, if so a newPoint event is sent.
If not, we can conclude that the destination is reached and send an event
accordingly.

Pathfinder

[not marePoints())/destinationReached

newDestination/calculatePath{ynewPoint

)

athnder_ de

[morePoints()inewPoint

paintReached

Figure 9: Path Finder

In figure 10 we see the Steering Strategy component. This executor will
shoot in action when a new target point is set. It checks where that point is
located in relation to itself. It then propagates events to adjust it’s position,
angle and cannon angle to the actuators. After a defined reaction time it
will repeat this process because the relation between the tank and the target
point will have probably changed.

SteeringStrateqy

Stee

ring

newPaint

Steering_ldle

[pointReached()\pointReached

[pointLeft{)fturnLeft

[pointRightCannon()icannonRight

[pointBehind{)istop

[pointRightiMurnRight

[pointAhead()}forward

[pointLeftCannon()ficannonLeft

[pointStraight()\stopTurn

AFTER(reactionTime)

Figure 10: Steering Strategy

In figure 11 we see a combined coordinator and actuator for the rotation
of the cannon. The actuator part is very similar to the components we saw in
PlayerTank. The extra purpose of the coordinator part is to get the cannon
back in a straight position after an attack. Once in the right position it goes
back to the idle mode until another enemy is sighted.

CannonCoordinator
CannongSteering

cannonlLeft

cannonRight

maovefturnCannonLeft()

s

topCannon

stopCannon

[notIN Tracked and cannonReset()]

movefurnCannanRight()

cannonL&f

Ly
cannonStraight

cannonLeft

annon_ldle
enemySighted

cannenRight

Figure 11: Cannon Coordinator and Actuator

10

5. Conclusion and Future Work

Modelling with statecharts definitely is a good way to obtain complex
Al in a structured and easy-to-understand manner. Also in general when
keeping track of certain states is needed, like for instance what key is being
pressed at the moment or whether or not a game is paused, statecharts tend
to be useful. However they do degrade performance and it is recommended
to not use them for every possible use-case.

Future work could consist of extending the AI model and thus making
the NPC more intelligent but this paper only had as goal to test the ability
of statecharts which we already have completed.

References

[1] J. Kienzle, A. Denault, H. Vangheluwe, Model-based Design of Computer-
Controlled Game Character Behaviour.

2] AToM?, http://atom3.cs.mcgill.ca/.

[3] H. Feng, DCharts, a formalism for modeling and simulation based de-
sign of reactive software system, http://msdl.cs.mcgill.ca/people/
tfeng/thesis/thesis.html (2004).

11

