

Modelling Languages: Concrete (Visual) Syntax

Hans Vangheluwe

Santiago de Compostella 4 September 2013

Modelling Languages/Formalisms

Concrete Formalism F

Explicit Modelling of Modelling Languages/Formalisms

Textual Languages

"this sentence is very short"

- Individual letters in an alphabet
- Combined into words
- Combined in to sentences in a language
- Letters in words specified by regular expressions
- Words in a language specified by a grammar
- Symbols are combined by "is to the right of"

The Spoofax Language Workbench

Report TUD-SERG-2010-014a

Rules for Declarative Specification of Languages and IDEs

Lennart C. L. Kats Felco Visser Delft University of Technology Delft University of Technology Lc.Lkats@tudelft.nl visser@acm.org ■ EntityLang-Colorer.esv 🛭 - F example.ent 🔀 i ⊝module example imports EntityLang-Colorer.gener // Example "EntityLang" program colorer ⊖entity User { : String _.Type : 0 0 255 password : String homepage : URL - F ■ EntityLang.sdf 🔀 %% Grammar for the EntityLang language entity BlogPosting { %% By default, based on an example "entities" syntax poster : User body : String imports Common entity URL { ⊝exports location : String context-free start-symbols D 🌬 Start context-free syntax "module" ID Definition* -> Start {cons("Module")} "entity" ID "{" Property* "}" -> Definition {cons("Entity")} ID ":" Type -> Property {cons("Property")} -> Type {cons("Type")} ID

Visual Languages

DSMTP 2013 Domain Specific Modeling Theory and Practice

Journal of Visual Languages and Computing (2002) 13, 573–600 doi:10.1006/S1045-926X(02)00025-3 available online at http://www.idealibrary.com on IDE L

A Classification Framework to Support the Design of Visual Languages

G. Costagliola*, A. Delucia†, S. Orefice‡ and G. Polese*

Plex

Graph

Connection Types

Iconic

Box

Visual Language Classes

Hybrid Languages

Syntax-directed Visual Editors: model behaviour

Syntax-directed Visual Editors: freehand (early stages of multi-domain project)

Gestures included in the open source gesture library

Different Media: Gestural Interaction, Sound, ...

DSMTP 2013 Domain Specific Modeling Theory and Practice

DSMTP 2013 Domain Specific Modeling Theory and Practice

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, NOVEMBER-DECEMBER 2009

The "Physics" of Notations: Towards a Scientific Basis for Constructing Visual Notations in Software Engineering

Daniel L. Moody, Member, IEEE

Introduction

- Visual notations pre-date textual ones
- Visual notations are important for Modelling and Software Engineering
- Humans are excellent pattern recognizers
- Need cognitively efficient and effective notations.
 - Cognitive effectiveness = speed, ease and accuracy with which a representation can be processed by the human mind

Introduction/Rationale

Visual notations are often introduced without underlying theory or rationale

Many visual notations for same concepts.

No rigorous way to compare effectiveness and hence no clear design goal.

Communication Theory

Encoding: 8 visual variables to (graphically) encode information

Decoding

automatic, fast, parallel

slow, large effort, sequential

Appropriate notations » offload some of the burden from cognitive to perceptual

Principles for Designing Efficient and Effective Visual Notations

Semiotic Clarity (semiotics = study of signs and sign processes)

Perceptual Discriminability

Perceptual Discriminability

should be easy to **distinguish** visual symbols

ability to distinguish is determined by **visual distance** larger visual distance » faster, more accurate recognition

- number of visual variables on which they differ and the size of the differences
- shape is the main visual variable

Perceptual Discriminability

Software Enginering notations mostly look rectangle variants

Use redundant visual encoding to increase distance (e.g., textual + visual)

Semantic Transparency

Extent to which the **meaning** of a symbol can be **inferred** from its **appearance** (intuitive)

Symbols can be:

- Semantically Immediate
- Semantically Opaque
- Semantically Perverse

Software Engineering notations are usually abstract (non-intuitive)

Domain-specific icons are intuitive

Semantic Transparency

Complexity management (# diagram of element » cognitive overload)

Modularization/Hierarchy

Cognitive Integration (different notations)

- Conceptual integration (coherent mental model)
- Enable navigation and transition between notations

Visual Expressiveness

Number of visual variables used (UML, mostly shape, no colour)

8 degrees of visual freedom (0 = non-visual - 8 = visually saturated)

Visual Expressiveness

Different visual variables have different capacity to encode information

Variable	Power	Capacity
Horizontal position (x)	Interval	10-15
Vertical position (y)	Interval	10-15
Size	Interval	20
Brightness	Ordinal	6-7
Colour	Nominal	7-10
Texture	Nominal	2-5
Shape	Nominal	Unlimited
Orientation	Nominal	4

Dual Encoding

Combine Textual and Visual

Supplement rather than duplicate (e.g., cardinality values) **Reinforce** meaning

Graphic Economy

- Not too many symbols. If many, provide legend
- Limit on human discrimination capability (6 levels per variable)
- Upper limit on graphic complexity

Cognitive Fit

Adapt choice of visual notation to

- Task
- Audience novices and experts

Representation medium

Interactions among principles

