- '} o ‘:l o
I I ' ! »
/:: . “{L)J ﬂ e :i—

Theory and Practice

Model Transformation

Eugene Syriani

Software Engineering Group

Department of Computer Science ALABAMA

College of Engineering

University of Alabama

M .
‘[I’)h I,':,,?ﬂ,}j Model Transformation

MOTIVATION

Diept. Mame
Chair Employee ID (fk Professor)

Course Professo
-name -name .
-scheduls . - -employee id -
-term +prepare material()
smaodi +teach lecture()
. ity schedule) +evaluate assignments()
offers]_~
<“> v
has {}
o0 . Department
o -name Chair
@ =rioyesio ~add Course() Amanages
+add professon) —create policy()
+remove course() 1 1
- +remove professor() +evaluate professor()
0.7 +change chair()
Teaches

(1.1}

oo g

Course Prof-Course
Course name
ﬁ Schedule
(.m (1.1} () Tem

Model Transformation

* Suppose | ask you to provide a software that converts any E-R diagram
into a UML class diagram, how would you achieve that?

* Assumptions in E-R:
— Entities & relations can contain attributes

— Attributes can be of type:
NUM, CHAR, TIMESTAMP, BIT

— An entity may have one or more primary attributes
— Relations relate 1-* or *-* entities

— IS-A relationship between entities can be used

* Assumptions in UML CD:
— Classes, associations, attributes, and inheritance can be used
— Attributes may be of any type

— OCL constraints may be defined

Model Transformation

* Write a program that takes as input a .ER file and outputs a .UML
file (or something similar)

e What are the issues?

— What if the ER file is a diagram? in XML format? Probably end up limiting
input from a specific tool only

— Similarly in UML, should | output a diagram (in Dia or Visio)? In XMI? In
code (Java, C#)?

— How do | organize my program?

= Requires knowledge from both domains
= Need a loader (from input file)

= Need some kind of visitor to traverse the model, probably graph-like data
structure

» Need to encode a “transformer”
= Need to develop a UML printer

* Not an easy task after all...

Model Transformation

1. Describe a meta-model of ER
— Define concepts and concrete visual syntax

— Generate an editor

2. Describe a meta-model of UML (same thing)

3. Define a transformation T: MM _.->MM|;,,,.

— This is done in the form of rules with pre/post-conditions
= describes “what to transform” instead of “how to transform”

* Code is automatically generated from the trafo model to a trafo
instance that produces the result

 Some MT languages give you a bi-directional solution for free!

Model Transformation

Programing solution

+ Programming techniques are well-proven, it is a reliable solution
— Defined at the level of the code

— Evolution, extension and maintenance more tedious

— More likely to make errors

— Incoherent abstraction mismatch between

* The in/output artifacts: they represent designs models

* The transformation between them: which is pure code

Model Transformation

Modeling solution

+ In/output & trafo models are all defined at the same level of
abstraction, in the same domain:

* No need to add an extra “programmer” resource to the project

+ Much faster solution thanks to rule-based approach & automatic
code synthesis

+ Alteration of the transformation process are automatically
reflected in the final software product

+ You get a modeling environment for ER & UML for free!

* No need to read from external non-standard tool anymore

— Young technology, few people understand it & master it, many
challenges still need to be solved

Model Transformation

In practice

> You typically encounter the same problems in the modeling solution as
in the programing solution

» The difference is that you can find the problems more easily, fix them
very quickly and re-deploy the solution automatically

> Also, it does not require the developer to be a computer scientist or a
software engineer. The person who defines the requirements can
develop the solution as well

» The bottom line is that you save time, reduce the cost, fulfill the entire
scope and deliver a high-quality product

TP 2012 .
Yheoty sid Practics Model Transformation

* It seems that Model-based Design is the “Holy Grail” of software
engineering

 Well, the devil is in the details...

* We will explore
— The techniques that | mentioned
— ldentify some of the remaining hot challenges in MDE

— Solve some of these challenges

TP :
Theory ind Practics Model Transformation

Model Transformation

* How to modify them in a safe, structured way?
* How to establish logical relations, mapping between them?
* How to explicitly specify their semantics?

* How to generate code from them?

* In fact, how can we manipulate them?

 Model Transformation is a sub-field of MDE, responsible for
bringing your models to life

TP 2012 .
Yheoty sid Practics Model Transformation

“The process of converting one model to another model of the same
system.”

OMG 2003

“The automatic generation of a target model from a source model,
according to a transformation definition.”

Kleppe 2003

“The automatic manipulation of a model with a specific intention.”
Syriani 2011

TP 2012

and Practice

Model-to-model
model

Model Transformation

transformation ry
2
* Transformation K £
defined at the meta- o == "%,
model level S ,
e Execution of §
transformation is §

applied on the Source | o refers to Transfoation refers to Target
Meta-model B Specification 2 Meta-model
models to y c A
automatically H) ;
==
(\g | CEVENNY Transformation outputs
) Execution

conforms t
executes
conforms t

transform them

13

DSMTP 2012

Th

and Practice

S1

.
e vp—
. y P
- 5 D i B
; ", e
et) . = F—— ——
, i ain et S B
s Rl |
A e '
0
5 — s T I -
¥ otre—
[an :
e,
-4) - i
.ot g : ‘ l
30T _s
- i
e
- >
o~
v P -,

-

A< <<08)_TB2>)

Errmrhlams_C
[Gries L weg ST00e e 4

T AN G4 T35}

Y 2 W e <Sow
s Lahew gy i dele L3712 >3}

A sCancel regtitratamys v |
wrCrgdetet < TPy

SO <At Ched

TP 201 .
Yheoty sind Practica Model Transformation

* The meta-model of a language L defines:
— The abstract syntax of L

— The static semantics of L

* A transformation defined on L can define the dynamic semantics

of L: how model instances behave
Language

— — - *
Syntax Semantics Pragmatics
Concrete Syntax Abstract Semantic Semantic
Syntax Mapping Syntax Mapping Domain

Model
Meta-Model Transformation

TP 2012

Theory and Practice

Model Transformation

Manipulation

* A model transformation performs a manipulation on a model.

 Simple operations on a model:
— Add an element to the model;
— Remove an element from the model;
— Update an element’s properties;

— Access an element or its properties.

* These primitive operations are know as the CRUD operations
(Create, Read, Update, Delete)

Amrani, M.; Dingel, J.; Lambers, L.; Lucio, L.; Salay, R.; Selim, G.; Syriani, E. & Wimmer, M. Towards a Model Transformation
Intent Catalog. MoDELS Workshop on Analysis of Model Transformation, ACM, 2012

TP 2012

Theory and Practice

Model Transformation

Query

A query is still a transformation
e Whatis a query?
— A query is an operation that requests some information about a system.
— This operation takes as input the model M and outputs a view of M.
— Aview is a projection of (a sub-set of) of M.
* Restrictive view: Reveal a proper subset of M (all, none, some)
— Retrieve all cycles in a causal block diagram
— Show only classes/associations of a class diagram
» Aggregated view: Restriction of M modifying some of its properties

— Get the average of all costs per catalogue product in a relational database
schema

— In a hierarchical model, show top-level elements only, with an extra attribute
denoting the number of sub-elements

Model Transformation

QUESTION

Is a query a transformation? Why?

> It is a projection, obtained by CRUD operations on the properties
of M.

18

DAY Model Transformation S

TYPICAL USES OF MODEL TRANSFORMATION

Non-deterministic state automata (NFA) Deterministic state automata (DFA)

DAY Model Transformation S

TYPICAL USES OF MODEL TRANSFORMATION

Non-deterministic state automata (NFA) Deterministic state automata (DFA)

TP 2012

Theory and Practice

Model Transformation

Synthesis

 Model is synthesized into a well-defined language format that can
be stored, such as in serialization

* Model-to-code generation

— Case where the target language is source code in a programming language
Statecharts to Python Compiler

if e ==
if table[l] and self.isInState(l) and self.testCondition(3):
if (scheduler == self or scheduler == None) and table[l]:
self.runActionCode (4)
self.runExitActionsForStates (-1)
self.clearEnteredStates ()
e self.changeState (1, 0)
self.runEnterActionsForStates (self.StatesEntered, 1)
self.applyMask (DigitalWatchStatechart.OrthogonalTable[1l], table)
handled = 1
if table[0] and self.isInState (0) and self.testCondition (4) :
if (scheduler == self or scheduler == None) and table[0]:
self.runActionCode (5)
self.runExitActionsForStates (-1)
self.clearEnteredStates ()
self.changeState (0, 0)
self.runEnterActionsForStates (self.StatesEntered, 1)

self.applyMask (DigitalWatchStatechart.OrthogonalTable[0], table)
handled =1

Statecharts model Generated Python code

Model Transformation

Reverse Engineering

Inverse of synthesis: extracts higher level specifications from
lower level ones.

— UML class diagrams can be generated from Java with Fujaba

If the same model transformation T synthesizes M1 into M2 and
reverse engineers M2 to M1, then T is said to be a bi-directional
transformation.

TP 2012

Theory and Practice

Model Transformation

Approximation

* Refinement with respect to negated properties

— M1 approximates M2 if M1 negates the answer to all questions that M1
negates

* In practice, M2 is an idealization of M1 where an approximation is
only extremely likely

23

DAY Model Transformation S

TYPICAL USES OF MODEL TRANSFORMATION

B0} _TH>2>)
Erarharns_C

e T R

3 O ek] << <ay! ees L=?1555)
b hew Lo ~
~pghiid o donulcd SRS SR Ty

PhoneApps DSM of a conference registration mobile application Representation of the model in Statecharts

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

Model Transformation

Operational Semantics — Simulation

 Update the state of the model
* In this case, the source and target meta-models are identical.

 Moreover, the target model is an “updated” version of the source

model: no new model is created
FSA Simeulator

o s1—L—>fs2 =—>{57]
e OmaOma O

e

o s —1— s2b——>{s3]
OmaOmaOmaO)

e
o] s L5 —2

Uma OmaOma O

o s1—2 :-52
OmaOmaOma O

Model Transformation

Relation between Abstract and Concrete syntax

Model transformation can be used to specify mappings within the language too.
It can be used only if both the abstract and concrete syntax are themselves
modelled.

* Rendering

— Mapping from the abstract syntax to possibly several concrete
representations (textual, graphical, ...)

— 1 abstract syntax to many concrete syntaxes

e Parser

— Mapping from the concrete syntax to the corresponding abstract syntax
(graph)

— 1 concrete syntax to 1 abstract syntax

TP 2012

Theory and Practice

Model Transformation

Normalization

* Decrease syntactic complexity

— Translate complex language constructs into more primitive language

constructs
)
Y _ 2 kA BFRG
A o D { — 3
BI ! Efk - i 1 sl
Pean SRR S S mp " LY g
Mot/ g bR 1 8 P I
A2 © I i\ . T
C A .‘S'» J s ‘m : CFlL 7 ‘p‘
¥y - lo P Jh
| A \ \ e
—7 NE L p e e TR
H 1 |»‘ 7

— Transform all uses of a language construct in a normal or canonical form

CH, — CH, — OH

=
I
I—0—xI
|
I—O0—xI
I
O
Il
=

DSM 1 .
ecroll i Model Transformation S

TYPICAL USES OF MODEL TRANSFORMATION

Is_peimary : hoal
naene : Stelng

Class diagram meta-model

DAY Model Transformation Jh

TYPICAL USES OF MODEL TRANSFORMATION

El EJBArchive2 H EJBArchive3
1

0.* descriptor =
= name : EString 0.” X interfaces
— implements
= name : EString
—— i
] i

- E Annotation
]

= Stateful H stateless
= jsStateful : EString I
I b

Enterprise Java Beans 2.0 Enterprise Java Beans 3.0

TP 2012 .
Theoty sixd Practios Model Transformation

Optimization

* Improve certain operational qualities of the model while
preserving its semantics

* Typically used on architecture or design models

N-ary to binary association

+owner Purchase +holding +owner sholding[———————

Person Company Person Purchase Company
1 1 1 - : 1

- quantity

name

cost

Lot

guantity
name

DSM TP 2012
Theory and Practice

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

@addressee : PrintServer
@#contents : String
@woriginator : PrintServer

@ Packet (c:String, a:PrintServer)

(@#name : Stri
@#nextNode : PrintServer

9 PrintServer (s:String)

@ PrintServer (s:String, n:PrintServer)
9 accept (p:Packet) : Void

® bill (p:Packet) : Void

9 print (p:Packet) : Void

#paddressee : PrintServer
®¢send (p:Packet) : Void

{@@contents : String
(@voriginator : PrintServer

9 Packet (c:String, a:PrintServer)

@#name : String
@#nextNode : PrintServer

@ PrintServer (s:String)

@ PrintServer (s:String, n:PrintServer)
@ accept (p:Packet) : Void

@ print (p:Packet) : Void

P@send (p:Packet) : Void

DAY Model Transformation S

TYPICAL USES OF MODEL TRANSFORMATION

-addresziString
ghankan e Streg

Model weaving

TP 2012

Theory and Practice

Model Transformation

Synchronization
Integrate models that have evolved in isolation but that are subject to global
consistency constraints

* In contrast with composition, synchronization requires that changes are
propagated to the models that are being integrated

* Source model changes are propagated to corresponding target model changes:
Incremental / Change-driven transformation.

e Synchronization must be ensured in both directions: multi-directional

transformation.

Repo
sitory i

* Inconsistency management

Model Transformation

* Relationship between source & target meta-models

— Endogenous: Source meta-model = Target meta-model

— Exogenous: Source meta-model # Target meta-model

* Relationship between source & target models

— In-place: Transformation executed within the same model

— Out-place: Transformation produces a different model

oo | oognon | aer

Manipulation, Simulation X X

Aggregate query, Synthesis,
Out-place Restrictive query Reverse engineering,
Migration

Normalization, Composition,
Synchronization

Optimization, Refactoring X X

35

DSM 1 ;
e Model Transformation S

VOCABULARY

Endogenous Exogenous Either

Manipulation, Simulation, API

Horizontal))
migration

Language migration Composition

Refinement, Refactoring,
Restrictive query, Optimization,
Normalization

Aggregate query, Synthesis,
Reverse engineering,
Desugaring

Vertical

xR i Model Transformation

* Syntactical vs. Semantical Transformations

— A syntactical transformation solely modifies the representation of the
model

— In a semantical transformation, the output model has a different meaning

than the input model, although the representation of the latter may or
may not have been modified.

Model transformation chain to compile a DSM into executable Java code

&

Model Transformation o

QUESTION

Which transformation intent is syntactical and which is
semantical?

Manipulation, Query, Synthesis, Abstraction, Refinement,
Approximation, Translation, Analysis, Simulation, Rendering,
Parsing, Normalization, Model Generation, Migration,
Optimization, Refactoring, Composition, Synchronization

» Syntactical: Query, Synthesis, Rendering, Parsing, Normalization,
Model Generation

» Semantical: Manipulation, Abstraction, Refinement,
Approximation, Translation, Analysis, Simulation, Migration,
Optimization, Refactoring, Composition, Synchronization

38

TP :
Theory ind Practics Model Transformation

M R
2. .T..':pfﬂ.lf Model Transformation

STATIC SEMANTICS (META-MODEL)

logout

DU EEFEAAGEEZ0 ~ . o

Pacman

+ name: string

Ghost
] : Go(G + type: ENUM(Blinky, Pinky, Inky, Clyde, CobraCommande
o =
S
*
| right. /) b
Food
+ points: int
Score

+ score: int

Show Chat
send screenshare invitation
send modelshare invitation

de Lara, J. & Vangheluwe, H. AToM3: A Tool for Multi-formalism and Meta-Modelling. FASE'02, LNCS: 2306, pp. 174-188, Springer-Verlag 2002. 40

M .
‘?h .T..':p?ﬂcf Model Transformation

CONCRETE SYNTAX

DYy EeMEnALRG&s0 - 1. s — B T
® Lottty
"""" Foodicon
................................ Scoreboardicon
GridNodel con
PoGLink
FoGLink _
GoGLink

41

‘?hlfl’?ﬂj Model Transformation

GENERATE MODELING ENVIRONMENT

BRI Falmle et L If 22

42

?hSM.T..': ?.mf Model Transformation

GRAPH TRANSFORMATION TO SPECIFY SEMANTlCS .
OF LANGUAGE
NP EEefMMEnARGV2 0

_CaEe-

43

Model Transformation

L K R
Transformation .im - . . .ﬁ. = u .ﬁ.;m
e 1r I"g'“l . E N EH H E“H B

L Do ‘ £
mi '
I ! ' |
1\ ! I I
\ . right I right A
MiEem m L e
. . left . . . left .
|nput model up down up down up down up down
right right
Tim-mlm .81 y NE.
G H

If there exists an occurrence of L in G then replace it with R

44

Model Transformation

kill

3 3 \

/ ! 1\ Score: l Score: \
E.E NN = ,
2 ﬂ 2 .) ;g-

Na v 4
Hs L s AN/ EHE

. 3: MTpost_score =
ghostRight k score.setVaIue(PreNodes(S).score+y

i
] LHS RHS
H B

/-
\l-l

LHS RHS

.—'l
. .M

pacmanRight

. . =y
. . I
N l
[|
| el
AT w

DSM 2012 H
Theo .T..fp..?.ace Model Transformation

SIMULATION OF A MODEL

Your scare 2

pacmanDie

pacmankat

ghostMoveleft
ghostMoveRight
ghostMovelUp
ghostMoveDown
pacmanMoveLeft
pacmanMoveRight

pacmanMoveUp

R © o J o O s~ wIN]RE

0. pacmanMoveDown

TP 2012 .
Yheoty sind Practica Model Transformation

Execution

* Given input model

e Run transformation
— Rules

— Unordered, Priority, Layer, Control Flow

* Output
— New model

— Modified model

Model Transformation

Main Concepts of
Modeliliranstormation

Model Transformation

* Everything is modelled
Therefore a change will always be on a model.

* We explicitly model everything

A change or modification must itself be modeled = models of
transformations.

MM MMg MM’
A o A
| | |
2 | 2 2
£ | ¥ !
2 L =y =
s | 5 | 5 |
UI O Ul
| 0 |
M > M’

* O represents an intentional change (or alteration) of M, which yields M’

* MM, defines all possible changes for the same intention from an
instance of MM to an instance of MM’

TP 2012 .
Thoty sind Practica Model Transformation

7 MMM x
/ A N
/ [N\
Vs | N\
/ \
/ | N
MM, |V||V|-|- MM,

——> transformed to ':‘ ? ?
- - 3» conforms to : : :
. l : l
....... > is modelled by M |\/|T M’

T: operation that transforms the model M, into M.,

* M;: model of a transformation that transforms any model from MM, into a
model from MM,.

* MM;: meta-model of all transformations that transform models from any meta-
model.

* MMM: meta-model of the language used to describe meta-models.

TP 2012

Theory and Practice

Model Transformation

MM, [MM, | ... MM,

<
z\

< - — ==y

* MMy,: meta-model of the transformation units
— rules, queries, primitive operators, helper functions, modules/packages
* MM, meta-model of the scheduling language
— programing lang, workflow lang, modeling lang, DSL for scheduling trafos
MM, : meta-model of the pattern language

— model fragments specified in the pre- and post-conditions of transformation rules

51

M .
‘?h .T..':p?ﬂcf Model Transformation

FEATURES OF MTL

Transformation Rules |

Legend: .
—@ Mandatory feature | Intermediate Structures |
—y Optional teature

{iiﬂ&maﬁwe teatures | Parameterization |

?
{Inclusiv&nr teatures Bidirectionality

LHSRHS Syntactic Separation |

L]
|

| Semantically Typed | |Pitturns | | Mon-Executable | | Execiutable |

| Syntactically Typed |

|Imp9nrliu; | |Da[:larat'nm |

| Semantically Typed |

[Symtactically Typed |

Textual Graphical

52

TP 2012

and Practice

Model Transformation

Model Transformation

e A e

Rule

Specification | | Transform-
ation Rules» Application Organization» | | Relationship»| | tality» ality »
Control
Location Scheduling»

Determinaton»

* Specification
Pre/post condition on the transformation:

* Function between source & target models
* Relation may be executable or not

* Transformation Rules
Smallest transformation unit, used to specify a
transformation
* Rule-based transformations: pre-condition & post-condition for
rewriting
* Transformation units defined as functions
* Templates

* Rule Application Control
* Where is a rule applied on the model
* In what order are the rules executed

* Source-Target Relationship
* In-place
e Out-place

Rule

Source-Target | | Incremen-| | Direction-| | Tracing»

* Rule Organization
General structuring issues of

rules

* Modularization
* Composition
* Re-use

* Incrementality
Ability to update existing target models based on changes
in the source models

* Directionality
Transformation executed in one direction or in multiple
directions (uni-/multi-directional transformation)

* Tracing
Mechanisms for recording different aspects of

transformation execution:
* Create & maintain trace links between source & target model
elements 53

TP 201 .
Theory sind Practics Model Transformation

e Smallest transformation units

* A model transformation is mainly specified in terms of rules

A BFH—>1B A BFH—>1B
[A A%B]: %l} g
A A B

2a] Hr oy

TP 2012 .
Theoty sixd Practios Model Transformation

Defines how a rule can access elements of the models

1..* domains: examples of 1-way transformation? 2-way? n-way?

Domain language

— The language in which models are defined. Typically MOF

Domain Modes
— Read-only: source domain of synthesis
— Write-only: target domain of synthesis

— Read-write: domain of simulation

QVT-Relations rule

top relation PackageToSchema {
domain uml p:Package {name = pn}
domain rdbms s:Schema {name = pn}

}

Theory and Practice

TP 2012

Model Transformation

Patterns

Model fragment internally represented as:
— Strings: Template-based transformation
— Terms: tree representation of models

— Graph: Model-to-model transformation

Using a specific syntax (textual, graphical)

— Abstract syntax

— Concrete syntax

Syntactic separation

ATL rule

module Person2Contact;
create OUT: MMb from IN: MMa {

rule Start {
form p: MMa!Person (
p.function = ‘Boss’
)
to c: MMb!Contact (

name <- p.first name +
p.last name)

}

MoTif rule
v/— \\
\
) \\ y
5 \\ Supe
\\ M
T \\‘I aho 1
//’
/
v’/ """
/
'. /// Y
\ i

FUJABA: compact notation

Y methods screate superclass :UMLClass

45

=

perclass

meth

od :=

(UMLMethod) target stub :UMLGeneralization

r Sl{bclass

4 methods _«destrays -
- container :UMLClass_

Thaory sind Practios Model Transformation

How computations & constraints are specified on model elements

Java API for MOF

OCL quer
models query
Graph trafo
X
rule
QVT-Relations rule Kermeta operation [FalleriO6]
top relation PackageToSchema ({ operation transform(source:PackageHierarchy): DataBase is
domain uml p:Package{name=pn} do
domain rdbms s:Schema{name=pn} result := DataBase.new
}

trace.initStep (“uml2db”)
source.hierarchy.each{ pkg |

var scm: Schema init Schema.new

scm.name := .clone (pkg.name)

result.schema.add (scm)

trace.addlink (“uml2db”, “package2schema", pkg, scm)

end

TP 2012

Theory and Practice

Model Transformation

Ability to execute the transformation in different directions

* Unidirectional : create (or update) the target model only
» Multi-directional: can be executed in any direction

— Multi-directional rules

* Operational rules have a functional character: given an input model,
produce a target model.

— Causality from source to target model

* Declarative rules: gives a relation between both models that must be
satisfied

— Acausal relationship between the models TGG rule [Schurr94]

ciClass & % LTable
A cbClas:TaTable *
*

\'-\
'y

QVT-Relations rule

~
b 4

top relation PackageToSchema {
domain uml p:Package {name = n}
domain rdbms s:Schema {name = n} y 3t VES

} a:Altribute

. \ col:Column
/ ac AtmibaieToCobamm®,
-

A

Sy
name = n N A name = n

CEOTRATEER
<oreale= <oreatans

Model Transformation

An incremental transformation is defined as a set of relations between a
source and target meta-models. These relations define constraints on
models to be synchronized.

The first time it is run, it creates a target model. Trace links are often
automatically created.

Then, if a change is detected in one of the models, it propagates this
change to the other model, by adding, removing, or updating an
element so that the relations are still satisfied.

There are 4 standard scenarios in model synchronization:
— Create a target model from the source model
— Propagate changes in the source model to the target model
— Propagate changes in the target model to the source model

— Verify consistency between the two models

Model Transformation

Runtime footprint of a transformation execution

* Traceability links connect source & target elements
They are instances of the mappings between the domains

— Impact analysis
— Direction of the synchronization

— Debugging transformations
 Automatic creation of trace links: QVT, ATL

* Traces can be considered as any other model, but has to be
manually created:
e.g., AGG , AToM3, VIATRA

Model Transformation

Creation of additional elements which are not part of the domain

* AToM3: generic links, simplifies the transformation rules

* ATL: automatic creation of traceability links.
Each newly created element is linked back to element(s) of the

source model.

 AGG and VIATRA: make use of traceability to prevent a rule from

being applied on the same element.

FSA2PNTransition

MoTif rule

P2012

TP 2012 .
Yheoty sid Practics Model Transformation

Control Parameters

* Pre-defined binding of some model elements GReAT pivot passing
* ProGreS: variable parameter passing - orState : . |
. . n ’_t_ : 7 , | Out
® GREAT, MoTif: pIVOt nodes OrState : Atribute Atribute
® ’] old : Btring new : Sinng
Guard i ' " AttributeMapping
S18L8 |urers ¢ ! 1o StaleNew
! ’ ot : 0.* ? J J
selectCarryingAnt
ant ProGreS in/out parameters
MOTIf inOtS y 1 test GetProConjecture (diagnosis : DIAGNOSIS ; out evidence : EVIDENCE)
1:MTpre_hasFood = _ ___

hasFood == True

‘1 = diagnosis

moveToHill

5\ yes

| l

| I

| I

())) ! \ :
\ | yes-> 2 - EVIDENCE |

| l

1 |

i i

| l

. > 4 Lo pro

3 ant A

4
¥ 3 - EVIDENCE

1 6
. ‘ ~ |\ .

2:MTpost_pheromones = id i
_ pheromones.setValue(pheromones + 1024)) end: evieenee ==

TP 2012 .
Thioty ind Practics Model Transformation

Generics

* Pass element types to rules

* In this case, the types of the elements in the patterns are variable

VIATRA generic rule

condition pattern transClose(CF,C5,A,
ClsE, attE, ParR, AttR) =
{

S/ Pattern on the meta-level
entity(ClsE);

entity(4ttE);
relation(ParR,C1=sE,Cl=E) ;
relation{AttR,ClsE, AttE) ;

// Pattern on the model-level
entity(CP);

// Dynamic type checking
instancelf (CP,Cl=E) ;
entity(C3) ;

instancelf (C3,C1l=E) ;
entity(4);

instancelf (A,AttE);
relation(Par,C5,CP);
instancelf (Par,Park) ;

del relatiom(Attr,CS,A):

del instancelf (Attr,AttR);
new relatiom(Attr2,CP,A);
new instancelf (Attr2,AttR);

TP 2012

Theory and Practice

Model Transformation

Higher-Order Transformation (HOT)

* Takes a rule as input and outputs another rule

TraceLinkOnCreationRules

f——)

3 1

| 45
i ' 3 1 3,
|)k !
[[] i
' i
I
i
I

- 2 1 2

: =D

: v D! v D
5 ; 5

State2Place animateState

(i, 'O) [
O : O .3 D[?

58

3 ()2 A S
/ ()3 ()s
{ \) 2 : “ MTFO'C'_II n']r‘?'? 2) 1: MTpre current = 1: MTpost_current =
D ' name.setValue{PreNodes(1).name) current Trie cuirent se hue(False)
2: MTpost_tokens = 3; MTpre_tokens 2: MTpost_current

'
Value(! (1).i I g
K . name.setValue(in(PreNodes(1).isInitia y _ tokens > 0 current setValue(True) /

TP 2012 .
Theoty sixd Practios Model Transformation

Strategy for determining the application locations of a rule

* Deterministic: same choices will be made every time

* Non-deterministic
— One-point: once choice is made, at random (repeated?)

— Concurrent: all occurrences
= Critical pair analysis to ensure there are no overlapping matches

* |nteractive: choice resolved by user/external intervention

AH—>BI—>{B

Model:
ode A/]

we (] >

Model Transformation

Theory and Practice

Strategy for determining the order in which the rules are applied

* Implicit: completely determined by the design logic of the rules

— Unordered: One rule that is applicable is selected to be applied non-
deterministically at each iteration

— Grammar: unordered with start model and terminal states (generation or
recognition)

* E.g., Groove, MOMENT2

Rules: Model:

— ~

< [A> A%B]’[A%B> A%c] > AA>/JC =

TP 2012 .
Model Transformation

Theory and Practice

Strategy for determining the order in which the rules are applied

* Explicit internal: a rule may invoke other rules.

— In ATL, a matched rule (implicitly scheduled) may invoke a called rule in its
imperative part. Lazy rules

— In QVT, the when/where clauses of a rule may have a reference to other rules.

= When: the former will be applied after the latter t°Pd’;:i"i’§13§lcf_‘iiia}?le {

= Where: the latter will be applied after the former package = p:Package{},
i1sPersistent = true,

name = cn
}
domain rdbms t:Table ({
schema = s:Schema{},
name = cn,
cols = cl:Column {
name cn + ' tid’,
type ‘NUMBER' },
pkey = cl

}
when {
PackageToSchema (p, s):
}
where ({
AttributeToColumn (c, t):;

}

Model Transformation

Strategy for determining the order in which the rules are applied

» Explicit external: clear separation between the rules and the

scheduling logic.
Use a control structure to define rule scheduling

* Ordered: priority, layer/phased, explicit workflow structure, ...

* Event-driven: rule execution is triggered by external events

M .
2. .T..':p?ﬂ.’kf Model Transformation

RULE SCHEDULING

% AToM3 v0.3 using: Mutex META

74 Editing GraphGrammarEdit

WARNING: Name must use Python variable syntax
Name IALAP

InitialAction | |~ Enabled?

New ;newRuIel
—killRule 2
|mountRule 2
unmountRule 3
naceRvbo A

FmaIActionl |~ Enabled?

Load GG
Save GG

Generate latex document from GG

Generate GG code

Execute GG code

OK l Cancel |

‘ | i

|Editing 'Nonamed' (not modified) IALAP_GG_mdl py

69

M R
2. .T..':pfﬂ.lf Model Transformation

RULE SCHEDULING

File Edit Mode ./ Parser Analyzer Preferences Help
|5l =] Ml X[
o/ [ma e[8 (] 3m [| [RITR]NI[A[+][=] [m]i&= [s /¥

GraGras |: ‘Node Type
? @Smnpim | O Good
', * [Em] Type Graph N TR
L Graph || UniqueGoodOwnership with belongsToShop
[L=R] takeCart - & a4 — &
selectGood l ::;m;itxomer | H| [1-Customer p|2:8il
[E=R] paysin = :

total=y [, 5 i castex 5. gl 1Y
[E*R] createBill 6:Good 3:8hop 6:Good |, OWRS
[G=R] billGood value=z i 3:5hop

value=z| "
[E+R] settleBill
9 A UniqueGoodOwnership
helongsToShop
belongsToCustomer
@ A RackOwnership
belongsToShop

" x| Customer] 1 0.1 |Bill . d Shop

int total
1 UniqueGoodOwnership L !
2 RackOwnership

v

0.1
owns

> Qood iy ¥ CashBox
int value 1 Rack int amount

(18&2)

| Ok || cancel |

70

DSMTP 2012
The

ory and Practice

Model Transformation

RULE SCHEDULING

Statechart for Gate

wantsToStraight(s) /s.goOn)

g wantsTQF ork(s) :2 3 g:g :_: >
[suctess] : 4
[swapToFork) 5 [18 ochH 1
Swap 10k or = n‘P 9 ORu- -3 ? n- Rth RUle3
* Rule1 Test
v pext 1:goOnQ P - g:g ::_ -
at swapToStraight
g m Ruled Rule5
staoht [\5‘.(1911 { GReAT data flow
\ ofk
(dgstroyed) 'r..é‘\a(.';

[suctess]

wantsToForkis) /s.goOn(
rf,k”E H

wantsToStraight(s)

FUJABA story diagram

J

71

DSMTP 2012

Theory and Practice

Model Transformation

EXPLICIT SCHEDULING FEATURES

Imperative
language

Control
structure

transaction,

Atomicity rule
u

Sequencing &

Branching choose...else

Looping loop
Non-
. and, or
determinism
Yes
Parallelism No
Back- . .
Implicit

tracking

Hierarchy

Modularisation

Story
Diagram

Rule

Yes

Branch
activity

For-all
pattern

No
No

Optional

No

Nested state

Abstract state
machine

gtrule
seq

if-then-else

iterate, forall

random
Yes

No

Choose
(implicit)

Yes

Priority
ordering

Rule

Implicit

No

Implicit

Within layer
No

Optional

No

No

Data flow

Expression
Yes

Test / Case

Yes

1-n
connection

Yes

No

No

Block,
ForBlock

Activity
diagram

Step

Yes

Decision step,
OCL

Self loop

No

Yes

Fork, Join

No

High-level
step

DEVS

ARule
Yes

Query

FRule, SRule,
LRule

Selector
pattern

Yes

Synchronizer
pattern

XRule

CRule

72

TP 2012

Theory and Practice

Model Transformation

* Model-to-text (concrete syntax)

— Visitor-based: traverse the model in an object-oriented framework

— Template-based: target syntax with meta-code to access source model

e Model-to-Model

— Direct manipulation: access to the APl of M3 and modify the models directly

— Operational: similar to direct manipulation but at the model-level (OCL)
— Rule-based

= Graph transformation: implements directly the theory of graph transformation,
where models are represented as typed, attributed, labelled, graphs in category
theory. It is a declarative way of describing operations on models.

= Relational: declarative describing mathematical relations. It define constraints
relating source and target elements that need to be solved. They are naturally multi-
directional, but in-place transformation is harder to achieve

TP :
Theory ind Practics Model Transformation

TP 2012

Theory and Practice

Model Transformation

Your score

@
@

75

Model Transformation

kill

3 3 \

/ ! 1\ Score: l Score: \
E.E NN = ,
2 ﬂ 2 .) ;g-

Na v 4
Hs L s AN/ EHE

. 3: MTpost_score =
ghostRight k score.setVaIue(PreNodes(S).score+y

i
] LHS RHS
H B

/-
\l-l

LHS RHS

.—'l
. .M

pacmanRight

. . =y
. . I
N l
[|
| el
AT w

Model Transformation

L K R
Transformation .im - . . .ﬁ. = u .ﬁ.;m
e 1r I"g'“l . E N EH H E“H B

L Do ‘ £
mi '
I ! ' |
1\ ! I I
\ . right I right A
MiEem m L e
. . left . . . left .
|nput model up down up down up down up down
right right
Tim-mlm .81 y NE.
G H

If there exists an occurrence of L in G then replace it with R

77

Model Transformation

Matching Phase
— Find an embedding m of the LHS pattern L in the host graph ¢
— An occurrence of L is called a match: m(L)
— Thus, m(L) is a sub-graph of ¢
Rewriting Phase
Transform G so that it satisfies the RHS pattern:
— Remove all elements from m(L — K) from G
— Create the new elementsof R — K in G

— Update the properties of the elements in m(L N K)
When a match of the LHS can be found in G, the rule is applicable

When the rewriting phase has been performed, the rule was
successfully applied

Model Transformation

Non-applicable rule

pacmanRight

1 z 1
H H B Bl B - - l
" N
: A
(A U NVUE B]

NAC ~ \ LHS \ RHS

\
~ |\ \
\

\ \

| \
\‘1

-@-AI
Bl B N

\
\

@

79

Model Transformation

Applicable rule

pacmanRight

1 z 1
H H B Bl B - - l
R CE
: A
LA BN NN - |]

: \
NAC © \ LHS \
‘\ Vo \
v\ \
>< v\ \
v\ \
v

.é-o-g.
H B B BN

80

Model Transformation

The matching phase is NP-Complete, the rewriting phase is linear.

There are various exponential-time worst case solutions for pattern
matching, for which the average-time complexity can be reduced with
the help of heuristics

Search Plan Approach

— Define the traversal order for the nodes of the model to check whether the
LHS can be matched.

— Compute the cost tree of the different search paths and choosing the less
costly one.

— Complex model-specific optimization steps can be carried out for generating
efficient adaptive search plans.

Constraint Satisfaction Solving Approach (CSP)

— Consider the LHS elements as variables, the elements of model form the
domain and typing, and the links and attribute values form the set of
constraints.

— Based on back-tracking algorithms

Model Transformation

QUESTION

What is the worst upper-bound
of the complexity for applying a rule?

TP :
Theory ind Practics Model Transformation

TP 2012 .
Yheoty sind Practica Model Transformation

From Chomsky Grammars to Graph Grammars

e Start symbol: S
* Terminals: {a, b}
* Non-terminals: {S, A}

* Production rules:
S - ASb
A-a
S—-¢

< [A> A%B]’[A%B> A%c] - AA>/C =

Model Transformation

From Term Rewriting to Graph Rewriting

* Signature: {0, s, add}

 Rewrite rules:
add(0,y) - y
add(s(x),y) - s(add(x,y))

D] Ty

TP 2012 .
Thioty ind Practics Model Transformation

* Based on category theory
e Category: Graphs

— Objects: typed, attributed, labeled, directed graphs
G=,E,s,t)
s,t:E -V

— Morphisms: total graph morphisms in the form
fiG6 > H=(fy:Vg = Vy, fe:Eg — Ey)
— Composition:
f(B,C) o g(A,B) = h(4,0)

— ldentity:

foid=f

TP 2012 .
Yheoty sind Practica Model Transformation

A pushout over morphisms m:L — G and r: L = R is defined by
* apushout object H
* morphismsn:R > Handr':G - H
such that the following diagram commutes
I’
L - R

TP 2012 .
Yheoty sind Practica Model Transformation

l r
A production p: (L —«K- R) is composed of a pair of injective
morphisms [: K — L and r: K — R where:

e L is the LHS
* Risthe RHS

e K is the interface

Model Transformation

[T
Let p: (L K- R) be a graph production

Let D be a context graph

Let m: K — G be a total graph morphism (match)

p,m
A Double Pushout (DPO) graph transformation G = H is given by
the DPO diagrams

[y
L < K - R

m| (1) /lc (2) |n
G D—— I
I g

Model Transformation

1. FindamatchM =m(L) inG

2. Remove L — K from M such that the gluing condition (G — M) U
k(K) = D still holds

3. GlueR — Kto D inorder to obtain H

Model Transformation

Pot (L€ v C) r ™
3 %3
ﬁcln—--m-» *5, = AI > o3,
d
_ J _'D J

* |ldentification condition

— No two vertices in the LHS shall be mapped to the same element such that
they must be deleted

G"
— p,y cannot be applied on G’

* Dangling condition

— The LHS specifying the deletion of a vertex shall include all its incident

edges 6:fC ¢ .C)
— P &y,

— p, cannot be applied on G

C
¢ - @
A B

Model Transformation

Interface graph: [, r are total
morphisms

Restrictions on deletion of
nodes & edges

Safe by construction

L4Z_K_F.R
ml (1) (2) l”
G

|

k

|

gy
S g

7 is a partial morphism

Dangling problem resolution

— Implicitly delete the edges
adjacent to the to-be-deleted
vertex

Identification problem

— In practice, rule becomes
inapplicable. But still allowed
in theory

Unsafe, care should be taken

L R
)
]/,/
G——H

Model Transformation

Model Transformation has many applications:

— Generate PSMs form PIMs and reverse engineering

— Map and synchronize among models at the same or different level of
abstraction

— Create views of a system
— Model evolution tasks
* Since the applications are very different in nature, it is not optimal

to have a single model transformation language that supports all
of the above.

* Instead, it is more appropriate to have dedicated transformation
languages tailored to specific transformation problems.

