Clafer: a concept modeling language

Athanasios Koutoulas

19 Dec 2013



abstract

The purpose of this paper is to provide a description of the Clafer modeling
language and its properties in the context of my project for the course Model
Driven Engineering. This paper refers to Clafer a textual language for con-
cept modeling and is based on the analysis of its properties. After a brief
introduction about Clafer, the ability of this language to combine Feature
and Class Modeling is discussed. Moreover this paper contains the descrip-
tion of the Clafer to Alloy translator, the tool that gives precise semantics
to Clafer. Finally I would like to mention that the biggest part of this paper
focuses on the syntax of this language and the analysis of Clafer models by
means of some examples.

introduction

The word Clafer is an acronym coming from the words class feature and
reference. This fact implies that Clafer language supports class modeling,
feature modeling and reference modeling. Moreover Clafer is a lightweight
modeling language which is designed to have a small footprint, it is an easy
language to implement and it has minimalistic syntax and features. Clafer
is a textual language which is used in concept modeling and specification of
software product lines [2] and it has the ability to provide a uniform syntax
and semantics to class and feature models. Its goal is to make lightweight
modeling more accessible to a wider range of users and domains, including
enterprise systems. Clafer has several applications and it can be used for
Domain and structural modeling. Clafer models can encode feature, class,
and meta-models which contain complex constraints. Moreover the language
provides model verification and validation. It has the ability of testing the
consistency of models; check if given examples correspond to correct instances
of models and derive multiple examples from models. Another important ap-
plication of Clafer is the Model completion. The tool contains the ClaferlG
which helps to automatically configure models and specify attribute vales to
derive fully-specified model instances. For the configuration of a model, the
engineer can specify only some properties while the rest of them will be auto-
matically completed by the reasoner. Finally Clafer offers Debugging. When
a model is inconsistent, ClaferIG highlights the contradicting constraints and
it can also show inconsistent models.



Class, Feature Modeling and Mapping

In general, a Clafer model is a set of type definitions, features, and con-
straints. A type can be understood as a class or feature type. A type
definition can contain one or more features. A feature definition creates a
feature and, implicitly, a new concrete type, both located in the same name
space. Features are slots that can contain one or more instances or references
to instances. The parent-children hierarchy is indicated by simply indenting
sub-features under parent feature. The Features have feature cardinalities,
which constrain the number of instances or references that a given feature
can contain. Moreover features and types have group cardinalities, which
constrain the number of child instances, i.e., the instances contained by sub-
features. For the Class modeling a model is again a set of type definitions,
features and constraints. The abstract modifier indicates that no instance
of the type will be created, unless extended by a concrete type. Now fea-
tures correspond to attributes or role names of association or composition
relationships in UML. The mapping between class and feature modeling is
provided by adding a constraint to the original feature model resulting in a
constrained feature model.

Clafer model

In this section I will describe how a Clafer model looks like and what does it
contain. First of all Clafer models consist of Clafers and constraints. Clafers
express the domain concepts and the variability among them with the help
of nested constraints. There are two kinds of Clafer abstract Clafers and
concrete Clafers. The declaration of abstract Clafers defines a new type (the
set of abstract Clafers represent the Metamodel of the domain of the system
under test). The Concrete Clafers represent a possible set of instances of an
abstract one: there are several features associated with a Clafer model.

e Hierarchy / nesting: this is supported by means of indentation.

e Cardinality: defines how many instances of a given Clafer can appear
as children of the parent Clafer.

e Group cardinality: defines how many children or a given Clafer can be
instantiated.

e Inheritance: where both concrete and abstract clafers inherit every-
thing from their superclafers.



e Reference: which are used for defining relations between Clafers.

We can understand these features of Clafer by means of the following
example which is illustrated in the following figure.

abstract Vehicle
serialNo : int

Automobile : Vehicle
xor Engine
Gasoline
Electric
or Radio ?
CDPlayer
Tape

[Electric —- Radio]

numOfAutomobiles : int
[numOfAutomobiles = #Vehicle]

figurel: Clafer Model

The model consists of an abstract Clafer with the name vehicle that con-
tains the integer attribute serial number. The Clafer vehicle is a super-Clafer
of the Automobile Clafer and on the other way around Automobile is a sub-
clafer of the vehicle Clafer. Automobile is a concrete Clafer as long as it
can give instances to the abstract Clafer vehicle. The Automobile Clafer
also contains the attribute of the serial numbers as long as its superclafer
contains it. As we can see the model is based on indentation. Automobile
has two children engine and radio. The XOR in front of the engine declares
group cardinality and it stands for exactly one of (1..1 cardinality). Similarly
the OR has the same role and it stands for at least one (1..* cardinality). The
attribute Gasoline and Electric are children of the attribute Engine and de-
scendants of Automobile. The same happens with the attributes CD player
and Tape. As we can see the attribute Radio contains the symbol “?” which
declares cardinality and stands for 0...1 cardinality. In other words the at-
tribute Radio is optional attribute and it defines that the Radio can appear
as an instance of its parent Clafer Automobile. Moreover we can see that
we can apply constraints with Clafer based on indentation. We can add the
integer attribute of numOfAutomobiles that stores the number of all vehi-
cles in the model. The constraint in the last line specifies that the number
of Automobiles is equal to the number of vehicles. Finally the arrow (=)
declares implication. If the engine of the automobile is Electric then the
Automobile must contain Radio. At this point I would like to mention that
if we don’t specify the cardinality of some elements Clafer assumes that by



default Clafers are mandatory and their cardinality is equal to 1..1.

Clafer to Alloy Translator

Clafer is designed simultaneously with the clafer to alloy translator. The
translator /compiler takes a Clafer model and transforms it to corresponding
Alloy model. This happens in order to give precise semantics to the lan-
guage by preforming semantic analysis and establishing a mapping to Alloy.
The translator comprises of lexer and parser of layout resolver which makes
a Clafer model shorter and easier to read by reconstructing the code (for
example the relationship parent-child can be simply expressed by identifying
sub features further). The translator also contains the desugarer. Clafer is
composed of two languages the core language and the full language [3]. The
desugarer takes out the large amount of syntactic sugar from the full language
turns it into a minimal language with well-defined translational semantics.
The separation of the two languages simplifies the semantics analysis. The
translator also contains the semantic analyzer. The semantic analyzer trans-
lates the same parts that can cause conflicts because of the different nature
of Alloy and Clafer. Finally the code generator transforms the core language
into Alloy. In the following figure we can see a contrived example of the
desugarer.

abstract A abstract 0..* c1_A : clafer 0..* {
B : string 0."¢c2 B:string1.1{ }
C>A? 0.7¢3 C->cl_A0.1{ }
D* 0.c4_ D:clafer0.*{ }
E+ 0."c5 _E:clafer1..*{ }
xor F 1..1 c6_F : clafer 1.1 {
G 0.%c7_G:clafer0..1{ }
H 0."c8_H:clafer0.1{ }
orl? 1..%¢9_| : clafer 0.1 {
J 0.7¢10_J:clafer0.1{ }
mux K + 0.1 ¢11_K : clafer 1..* {
L 0.7c12_L :clafer0..1{ }
M 0.*c13_M:clafer0..1{ }
}
}
N:A 0.*c14_N:c1_A1.1{
[C=N [this.c3_C=c14_N &&
noD no this.c4_D &&
#E>5 #this.c5_E>5 &&
J] some this.c9_l.c10_J ]
B : integer 0..*c15_B :integer 1..1{ }
}

figure2: Desugared Model



Fragments in green and bold are the same in both models. Fragments
in red and bold on the left are expanded into corresponding fragments on
the right. Fragments in black on the right are results of applying defaults,
resolving indentation, and making the identifiers unique [4]. As we can see in
the desugared model the following changes are made: - Names were mangled
to be unique (note that a new Clafer B is declared as a child of N and its
unique name is different from the Clafer B declared as a child of A)

e Indentation was resolved into explicit nesting using curly brackets

Clafer and group cardinalities were specified explicitly .

The default super Clafer “clafer” was added .

The multi-line constraint is written now into an explicit conjunction .

The default qualifier “some” was added in the last constraint .

The distinction between the concise and desugared syntaxes is not strict.
It depends on the modelers to choose the level of detail that fits best to their
needs. For example, explicit nesting using may be freely mixed with inden-
tation. Also, modelers may choose different styles of specifying cardinality
[4].

Clafer tools description

In this section the tools that Clafer is using are briefly discussed. Clafer
contains a Clafer compiler which is used in order to translate Clafer mod-
els to Alloy, XML, and desugared Clafer. It also contains Clafer Instance
Generator which is used for generating instances of Clafer models; to show
counter examples, and conflicting constraints. Moreover Clafer contains the
Clafer Configurator , an interactive, web-based, configurator which is used
for attributed feature models with inheritance subset of Clafer. ClaferMOO
is another part and is used for performing multi-objective optimization over
Clafer models limited to the attributed feature models with inheritance sub-
set. The ClaferMOO Visualizer visualizes optimal instances of Clafer models
and allows the performance analysis of the Pareto Front. Finally the Clafer
Wiki integrates informal documentation in natural language with more for-
mal Clafer models [1].



Refrences

1.

2.

http://www.clafer.org

Attributed Feature Models in Clafer,Kacper Bak, Generative Software
Development Lab, University of Waterloo, Canada.

Clafer: a Unified Language for Class and Feature Modeling, Kacper
Bak Generative Software Development Lab ,University of Waterloo,
Canada

Domain Concept Modeling Using Clafer, A Tutorial By Michat An-
tkiewicz Version 9.2, Mar 20, 2012

Scotiabank Mortgages in Clafer, Draft v. 3 April 24, 2011 By Michat
Antkiewicz



