Generation of Functional Mock-up Units from Causal Block Diagrams
Reading Report

Bavo Vander Henst

University of Antwerp
Model Driven Engineering
Bavo.VanderHenst@student.uantwerpen.be

Abstract

In this report we will investigate related work of our project. Because there are not a lot of papers about Causal Block
Diagrams we will mainly focus on the Functional Mockup Interface (FMI). Our work is closely related to that of Bart

Pussig, so we will also examine his paper.

Keywords: Causal Block Diagrams, Optimazation, Functional Mockup Units, Co-simulation

1. Introduction

Models are increasingly used within software engineer-
ing to simulate the behaviour of a system. These models
can be represented in different formalisms which makes
co-simulation impossible. The Functional Mockup
Interface [1] tries to solve this problem by defining an
interface for co-simulation. In this project we will try
to generate Functional Mockup Units (FMUs) from
Causal Block Diagrams implemented in Python.

An additional part of this project is to try to optimize the
CBD before the translation to the FMU to gain compu-
tation time while running the FMU.

2. FMI

We start by looking at The Functional Mockup Inter-
face. The FMI consists of two main parts.

1. FMI for Model Exchange
2. FMI for Co-Simulation

The main idea of both interfaces is to create a standard
for files so they can be exchanged. We will look at the
two parts individually.

2.1. Model Exchange

The interface of model exchange consists of some
functions that can be called by the solver. These func-
tions can be used to request the internal state of the

Preprint submitted to Model Driven Engineering

model. Because of this Black Box that is created, we are
able to exchange our model with someone else. We can
also make a new solver without remaking our model.

‘ Model 1 \::> Model 1

‘ Solver A ’

‘ Solver B

Because the models inside can be compiled, which also
helps to protect intellectual property, the model can be
used, but not viewed.

2.2. Co-Simulation

The second interface is to couple two or more simula-
tion tools (solvers) with each other. This can be needed
if you don’t want to recompile multiple models together
or if you don’t have the source code of the models. Here
the interface isn’t located between the model and the
solver, but between the solver and a master program.
The master program is responsible to syncronize all the
simulations and to pass data among them.

December 19, 2013



Model 1 Model 2

Solver A SolverB

Master Program

As we can see in the image, all the simulation kernels
(model + solver) are connected to a bus. The master
program as well is connected to the same bus. Now we
create a co-simulation enviroment where parts of the
whole simulation can be swapped with new, better or
faster algoritms.

2.3. Project

For the project we will create a co-simulation Func-
tional Mockup Unit. This FMU will consist of 2 parts:

1. C-code
2. XML-file

The C-code is used to represent the data and contains
algoritms to solve the used formalism. The XML-
document holds all the extra data about every part of the
used model. To generate an FMU the C-code is com-
piled and compressed with the XML-file.

3. Causal Block Diagrams to FMU

We will now look at ways of how to generate an FMU
from Causal block diagrams. As [2] suggests, we will
use an output trace of our CBD implementation to col-
lect data for our FMU. We will try to go further into the
optimization of the CBD before it is compiled into an
FMU. Therefore we will first have to flatten the hierar-
chical CBD to one, non hierachical CBD.

4. The project

The project will consist of multiple steps from a CBD
to a FMU:

1. Replace possible integrator and derivative blocks
by their hierarchical block. This needs to be done
because the integrator and derivative can’t be com-
puted directly. We must therefor use an approxi-
mation,

2. Flatten the hierarchical CBD making sure the
tracebility is assured,

3. Optimize the CBD by constant folding and other
optimization techniques,

4. Genereate C-code and XML data,

5. Compile to an FMU.

To investigate our optimization we will use the Math-
Works ®/Simulink ®F14 case study. This is a model
of the vertical axis movement of an F14 fighter jet mod-
deled in simulink.

References

[1] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauss,
H. Elmgqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Neid-
hold, et al., The functional mockup interface for tool independent
exchange of simulation models, in: Modelica’2011 Conference,
March, 2011, pp. 20-22.

[2] B. Pussig, J. Denil, P. De Meulenaere, H. Vangheluwe, Gener-
ation of co-simulation compliant functional mock-up units from
simulink® , using explicit computational semantics (2013).



