
Demystifying ATL
and an Introduction to the RPG2Petrinet
Project

Demystifying ATL

Hybrid
rule-based

ATLAS
Transformation
Language

Transformation pattern

Read-only Write-only

Simple transformation example

Peasant Metamodel Warrior Metamodel

conforms

MOF
conforms

Simple transformation example

Peasant Metamodel Warrior Metamodel

conforms

MOF
conforms

conforms

name: Ivan

conforms

MOF

Simple transformation example

(warriorName= name + “ the terrible”)

Peasant Metamodel Warrior Metamodel

conforms

conforms

conforms

conforms

name: Ivan name: Ivan
the terrible

Transformation

conforms

Simple transformation example

(warriorName= name + “ the terrible”)

Peasant Metamodel Warrior Metamodel

conforms

conforms

MOF
conforms

conforms

name: Ivan name: Ivan
the terrible

Transformation

ATL

conforms

conforms

conforms

Peasant2Warrior.atl
(transformation definition)

Peasant2Warrior.atl

Peasant2Warrior.atl

GUARD! IN-PATTERN

OUT-PATTERN

set of source types and guard
ATL Engine tries to find set of matches
of this pattern in source model

set of target type elements being
created when applied and a set of
bindings.

The power of ATL
● Traceability between: the rule, the match

and the newly created target elements.
● HOT: Transformations itself are models ->

used as input.
● In-Place transformations: newer versions!

simply by putting instead of from:
create OUT : MMa refining IN : MMa

Project

Operational semantics

● Initially planned implementing operational
semantics of RPG.

● ATL doesn’t support step-wise execution. ->
applies all found matches for all rules ->
goes from init state to final state in just a
blink.

The RPG2Petrinet experiment

Focus on denotational part:

Idea based on paper:“The RPG DSL: A Case Study of
Language Engineering Using MDD for Generating RPG Games for

Mobile Phones” by Marques et al

The RPG2Petrinet experiment

Petrinet MMµRPG MMRPG MM
(filter, keeps only
essential entities)

Thank you

