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Transformation pattern
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Peasant2Warrior.atl

GUARD! IN-PATTERN

OUT-PATTERN

set of source  types and guard
ATL Engine tries to find set of matches
of this pattern in source model

set of target type elements being 
created when applied and a set of 
bindings.



The power of ATL
● Traceability between: the rule, the match 

and the newly created target elements.
● HOT:  Transformations itself are models -> 

used as input.
● In-Place transformations: newer versions!

simply by putting instead of from:
create OUT : MMa refining IN : MMa



Project



Operational semantics

● Initially planned implementing operational 
semantics of  RPG. 

● ATL doesn’t support step-wise execution. -> 
applies all found matches for all rules -> 
goes from init state to final state in just a 
blink.



The RPG2Petrinet experiment 

Focus on denotational part:

Idea based on paper:“The RPG DSL: A Case Study of 
Language Engineering Using MDD for Generating RPG Games for 

Mobile Phones” by Marques et al



The RPG2Petrinet experiment 

Petrinet MMµRPG MMRPG MM
(filter, keeps only 
essential entities)



Thank you


