
ATL Demystified and an Introduction to the

RPG2Petrinet Experiment

Daan Janssens

daan.janssens@student.uantwerpen.be

University of Antwerp

Abstract

ATL is a fairly well known M2M model transformation language. It’s a
hybrid rule-based domain-specific language (mixes declarative & imperative
constructs) and is part of the Eclipse Modeling Project. In this reading report
we will introduce the ATL language and take a look at various special aspects
and constructs introduced in multiple other ATL related papers. We’ll try
to partially demystify the broad spectrum of possibilities offered by ATL!

Keywords: ATL, eclipse, M2M, in-place, traceability, RPG, Petrinet

1. Introduction

Model transformations play the key role in Model Driven Engineering. It
seems ATL(ATLAS Transformation Language) fits perfectly in this picture.
In this report we’ll try to show why this is the case. It bundles multiple
other ATL related papers together and offers a short but useful introduction
to the language. This report is organized as follows. Section 2 gives a short
introduction to the basics of ATL (mainly based on Jouault et al. (2008)).
Section 3 covers traceability for ATL (based on Jouault (2005)). Section 4
covers In-Place transformations (based on Tisi et al. (2011)) and explains
why we didn’t chose an experiment like modeling the operational semantics
of an RPG game. Section 5 presents our first experience with the ATL eclipse
modeling environment (based on Allilaire et al. (2006)). Lastly, section 6
covers a short introduction to our planned experiment.



2. General overview of ATL

ATL follows a specific transformation pattern: a (read-only) source model
Ma gets transformed to a (write-only) target model Mb. This happens ac-
cording to a transformation definition MMa2MMb, which is written in ATL.
This transformation definition itself can be seen as a model which conforms
to the ATL metamodel, while Ma and Mb conform respectively to the meta-
models MMa and MMb. All metamodels conform to the MOF metamodel.

Figure 1: The transformation pattern

In Jouault et al. (2008) the basic syntax of ATL is explained. It covers
helpers, which are basically functions with expressions written in OCL. They
can navigate across model elements, though only on the read-only source
model side.

A transformation definition bundles one or multiple rules. Those rules are
the heart of ATL transformations( Allilaire et al. (2006)) because they de-
scribe how output elements are produced from an input element. They can
be specified in a declarative(matching rules) or imperative way. The declar-
ative approach is most of the time encouraged Jouault et al. (2008).

A matched rule is composed of a source pattern and a target pattern. The
source pattern(also called inPattern ( Bzivin et al. (2003))) specifies a set
of source types (from the source metamodel) and possibly a boolean OCL
expression (guard). The ATL engine will try to find a set of matches of this
pattern in the source model. The target pattern(outPattern) is composed
of a set of elements, where every element specifies a target type(from the

2



target metamodel) and a set of bindings. When a rule containing the target
pattern is executed, the target elements of the specified types are created.
The binding will specify the value used to initialize the properties.

There can be an entrypoint rule, which is the rule being executed first, this
rule can call other rules (imperative way). Also rule inheritance exists (the
new rule can specify additional elements or restrictions), however according
to Kusel et al. (2013) the support of it in ATL is still limited.

Most papers offered one or multiple case-studies, which have been a great
help in understanding the syntax. ( Jouault et al. (2008), Bzivin et al.
(2003), Jouault (2005) )

3. Traceability in ATL

By executing rules on a match, a dynamic traceability link will be auto-
matically created in the internal strutures of the transformation engine(Jouault
et al. (2008)). This link relates three components: the rule, the match and
the newly created target elements.

However if we want a persistent version of the traceability links we have
to find another approach. This approach is explaind in Jouault (2005).
They do this by attaching traceability generation code to pre-existing ATL
programs, this is possible because we can consider the transformation defi-
nition, as well as the traceability information as a model. In this way the
traceability generation code can be attached after a program is written.

Traceability is not in the scope of our planned experiment, but reading this
paper gave us an idea of the power of ATL. They also showed examples and
introduced HOT’s (Higher-Order Transformations).

4. In-Place transformations in ATL

We initially planned implementing the operational semantics of an RPG(Role-
Playing Game) game, based on a RPG metamodel and model, as ATL exper-
iment. New versions of ATL do support In-Place transformations, so that’s
not really the problem. ATL however doesn’t seem to support a step-wise
execution. It will try to find all matches for all rules and apply these, this

3



means you’ll go from initial state to final state in just a blink. This is not
the case in some other tools, like AtomPM( Syriani (2009)).

ATL was primary designed to transform read-only input models towards
write-only output models. This is not always exactly what we want. In some
cases we want to modify the source model (e.g. refactorings). This is called
In-Place transformations. The work of Tisi et al. (2011) described in great
detail the process of implementing In-Place transformations.In that paper
they refer to it by the term ’refinement transformations’ or ’refinement mode’

Before ATL supported refinement mode this had to be simulated by copy-
ing all source elements to the target elements and making the small changes
while copying. This naive solution had a lot of drawbacks (e.g execution time
increases.) In Tisi et al. (2011) they describe an alternative way that over-
comes these limitations, namely the in-place transformation mode. Where
the idea of constructing the target model incrementally from an empty one
is abandoned and the transformation starts from the whole source model.

5. First experience with the ATL eclipse modeling environment

The ATL eclipse modeling environment has been working like a charm so
far, however installing it and getting acquainted is a different story. There is
a lot of outdated information on the internet, which can be misleading. The
paper of Allilaire et al. (2006) didn’t really help a lot on this end. Also,
Models have to be made in xmi, which lacks the graphical aspect, which
makes the job of making the model cumbersome and increases the chances
of mistakes.

We ended up getting acquainted with the plugin from a series of youtube
videos ( abidredlove (2009)) that explained the basics of the environment
and the installation of it.

6. The RPG2Petrinet experiment

As explained in section 4, we chose not to implement the operational
semantics of an RPG game, but focus on the denotational part. Namely,
transforming an RPG metamodel to a petrinet. This has been briefly de-
scribed in the work of Marques et al. (2012). We will use the same approach:

4



first transform to a intermediate metamodel then transform to the petrinet
metamodel.

This planned experiment will cover a basic implementation of a transfor-
mation from a modeled role-playing game into a matching petrinet model
which can be used for analyzing purposes lateron. We will start with the
RPG Language Meta-Model which describes every possible feature of the
defined RPG Domain. After that we will build another intermediate lan-
guage (µRPG Language) which will work as a filter. It will only contain
the essential entities needed to check properties related to the petrinet anal-
ysis. Lastly, a transformation for RPG2µRPG and µRPG2petrinet will be
implemented!

5



References

abidredlove, 2009. abidredlove youtube channel @ONLINE. URL:
http://www.youtube.com/user/abidredlove?feature=watch.

Allilaire, F., Bzivin, J., Jouault, F., Kurtev, I., 2006. Atl – eclipse support
for model transformation, in: IN: PROC. OF THE ECLIPSE TECHNOL-
OGY EXCHANGE WORKSHOP (ETX) AT ECOOP.

Bzivin, J., Dup, G., Jouault, F., Pitette, G., Rougui, J.E., 2003. First
experiments with the atl model transformation language: Transforming
xslt into xquery, in: 2nd OOPSLA Workshop on Generative Techniques in
the context of Model Driven Architecture.

Jouault, F., 2005. Loosely coupled traceability for atl, in: In Proceedings of
the European Conference on Model Driven Architecture (ECMDA) work-
shop on traceability, pp. 29–37.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., 2008. Atl: A
model transformation tool. Sci. Comput. Program. 72, 31–
39. URL: http://dx.doi.org/10.1016/j.scico.2007.08.002,
doi:10.1016/j.scico.2007.08.002.

Kusel, A., Schönböck, J., Wimmer, M., Retschitzegger, W., Schwinger, W.,
Kappel, G., 2013. Reality check for model transformation reuse: The atl
transformation zoo case study, in: 2nd Workshop on the Analysis of Model
Transformations (AMT) @ MODELS’13, 2nd Workshop on the Analysis
of Model Transformations (AMT). pp. 1–10.

Marques, E., Balegas, V., Barroca, B.F., Barisic, A., Amaral, V.,
2012. The rpg dsl: A case study of language engineering using mdd
for generating rpg games for mobile phones, in: Proceedings of the
2012 Workshop on Domain-specific Modeling, ACM, New York, NY,
USA. pp. 13–18. URL: http://doi.acm.org/10.1145/2420918.2420923,
doi:10.1145/2420918.2420923.

Syriani, E., 2009. Atompm @ONLINE. URL:
http://syriani.cs.ua.edu/atompm/atompm.htm.

Tisi, M., Mart́ınez, S., Jouault, F., Cabot, J., 2011. Refining Models with
Rule-based Model Transformations. Rapport de recherche RR-7582. IN-
RIA. URL: http://hal.inria.fr/inria-00580033.

6


