
From Role-Playing Game to Petrinet, the ATL way.

Daan Janssens

daan.janssens@student.uantwerpen.be

University of Antwerp

Abstract

Model driven engineering helps increasing productivity by maximizing com-
patibility, simplifying the design process and promoting communication. The
field of game development is no exception to this. Additionaly, one can use
these models and model-to-model transformations to inspect specific prop-
erties of their game. In this paper we use ATL (ATL Transformation Lan-
guage), a model transformation language and toolkit developed on top of the
Eclipse platform, to model a role-playing game and transform it stepwise into
a petrinet for further analysis and requirements verification. In this way, we
tend to explore the capabilities of the ATL language and it’s use in game
development. We also present a comparison of the discovered advantages
and dissadvantages with other transformation languages.

Keywords: ATL, Eclipse Modeling Project, Model-Driven Engineering,
RPG, Petrinet

1. Introduction

The field of Model-Driven Engineering (MDE) aims to consider models
as first class entities, where model transformation are key for model han-
dling. Domain Specific Languages (DSL) are created in order to cope with
the increasing complexity of a specific problem domain. The logic behind
Computer games (more specific: role-playing games) is a perfect example of
this complexity. By creating a role-playing game Domain Specific Language,
we can create basic RPG game models. These models help the design process
and promote communication. They can also be used for code generation and
verification of various game properties. Without these models, some verifi-
cations can only be performed through extensive and costly tests.

In this paper we look at the completability of an RPG game (can the
game be succesfully finished?). This can be verified by transforming the
RPG model into a petrinet model and exploring the state space of it. We
use ATL, a model transformation language and toolkit developed on top of
the Eclipse platform, which provides ways to produce a set of target models
from a set of source models.

The transformation from RPG to Petrinet happens stepwise. First an
RPG model which is conform to the RPG metamodel is transformed into
a reduced RPG model, where features that are not helpful for the analysis
are removed. This reduced model is conform to a reduced RPG metamodel.
Next, the reduced model is transformed into a Petrinet model, which is con-
form to the Petrinet metamodel. Lastly, we transform our petrinet into a
model that is ’readable’ by a Petrinet tool called Pipe.

The remaining of this paper is organized as follows: Section 2 discusses
the related work. Section 3 gives an introduction to the basics of ATL and
the Eclipse modeling framework. Section 4 represents our analysis and intro-
duces the RPG formalism. Section 5 explains our approach in greater detail.
Section 6 discusses our design of the metamodels. We present an initial RPG
model and the implementation of our transformations in section 7. Section
8 shows our results of performing the transformations on the inital model.
Lastly, In section 9 we state our conclusion and future work. We also try to
compare ATL with other transformation languages.

2. Related Work

2.1. Games & Petrinets

The idea behind our research is not entirely unique. Game related do-
main specific languages have been proposed and discussed before by Walter
and Masuch (2011), Furtado and de Medeiros Santos (2006), Reyno and
Carśı Cubel (2009). However they focused mainly on the code generation
part and not the analysis part. Petrinets have been used in the past to verify
specific features of games. Brom and Abonyi (2006) and Araújo and Roque
(2009) focussed on the interactions between different actors and visualizing
the plot of a story between them with petrinets. It however does not use
an RPG model or transformation. The work of Marques et al. (2012) comes

2

closest to ours, they use ATL to transform a RPG model into Lua code and
transform the RPG into a petrinet to check if the goal can be reached. How-
ever, they abstracted their petrinet a lot more than in our work, which makes
it less visual and less useful to communicate with.

2.2. ATL

The ATL model transformation language has been studied extensively
before. The ATL basics and syntax/semantics are thoroughly discussed in
the work of Jouault et al. (2008), Bzivin et al. (2003). An overview of the
support in eclipse, the tool which we also used is given by Allilaire et al.
(2006).

3. ATL

3.1. Syntax and semantics

ATL follows a specific transformation pattern: a read-only source model
Ma gets transformed to a write-only target model Mb. This happens accord-
ing to a transformation definition MMa2MMb, which is written in ATL. This
transformation definition itself can be seen as a model which conforms to the
ATL metamodel, while Ma and Mb conform respectively to the metamodels
MMa and MMb. All metamodels conform to the MOF metamodel.

Figure 1: The transformation pattern

A transformation definition bundles one or multiple rules. Those rules
are the heart of ATL transformations(Allilaire et al. (2006)) because they
describe how output elements are produced from an input element. They can

3

be specified in a declarative or imperative way. The declarative approach is
most of the time encouraged (Jouault et al. (2008)) and is also used in our
approach.

A matched rule is composed of a source pattern and a target pattern.
The source pattern (also called inPattern (Bzivin et al. (2003))) specifies a
set of source types (from the source metamodel) and possibly a boolean OCL
expression (guard). The ATL engine will try to find a set of matches of this
pattern in the source model. The target pattern (outPattern) is composed
of a set of elements, where every element specifies a target type (from the
target metamodel) and a set of bindings. When a rule containing the target
pattern is executed, the target elements of the specified types are created.
The binding will specify the value used to initialize the properties.

By executing rules on a match, a dynamic traceability link will be auto-
matically created in the internal strutures of the transformation engine. This
link relates three components: the rule, the match and the newly created
target elements. These bindings can be queried by the use of the thisMod-
ule.resolveTemp(obj,’nameofelement’), which allows you to refer to created
target elements. This has been extensively used in our approach.

We also used ATL helper functions, which are written in OCL. They can
navigate across model elements, though only on the read-only source model
side. ATL also offers rule inheritance (the new rule can specify additional
elements or restrictions), however according to ? the support of it is still
limited. For that reason we decided not to use it in our approach.

The most important (and confusing at the start) aspect of ATL is that
each source element can be used only once as an inPattern for a rule. This
caused quite some problems with our inital RPG model, since we designed
it in a way that each Tile contained four neighboring Tiles. A solution to
this was the creation of a Connector element, that connected two Tiles. We
cover this further in this paper.

3.2. The ATL Eclipse modeling environment

Installing and getting acquainted with the modeling environment is not
an easy job. There is a lot of outdated information on the internet, which
can be misleading. The best way to get acquainted with the plugin is by
watching a series of informative videos about it (abidredlove (2009)). Once

4

it is up and running a new ATL project can be made. The basic workflow
is very pragmatic; a metamodel is created and defined in the Ecore format,
which is basically a sub-set of UML Class diagrams. From an Ecore model,
you can create a dynamic instance, which is a file in XSI format conform to
the metamodel. Lastly you start creating your ATL rules, for which Eclipse
also offers syntax highlighting. For executing an ATL file, one has to specify
the paths to the IN and OUT metamodel and model.

4. Analysis

4.1. RPG Formalism

Syntax and Static Semantics

1. An RPGame consists of a world that is divided into a number of scenes.

2. In each scene, there are a number of connected tiles.

3. Tiles can be connected in any direction (this is done by a connector
element that connects two Tiles together). This way, a map is created
for the scene.

4. In the game, there is one hero. The hero is always on exactly one tile.

5. A tile can be a ’standard’ tile, or an obstacle, on which no character can
stand.

6. On an ”standard” tile, there can be an object.

7. Objects are: goals, keys and doors.

8. A door is a portal to a door on another scene.

Dynamic Semantics

1. A character can move from one tile to another conneted tile (provided
it is not an obstacle)

2. A key and goal can be picked up by the hero by walking on its tile. They
can only be picked up once.

3. The hero can pass through a door to enter another scene.

4. Door are locked, and the hero must pick up a particular key (for that
door) to be able to enter it.

5. The hero wins if he can pick up all goals.

6. The game stops when the hero wins.

5

We decided to keep the hero as only character, additional villains/NPC’s
would make this example too complex and are not in our scope of main in-
terest.

4.2. Petrinet Formalism

We used the standard syntax and semantics of a Place/Transition Petrinet.
We refer the interested reader to the work of Wang (2007) for a look into the
petrinet formalism.

5. Approach

The setup of our experiment is depicted in Figure 2. We started by
creating a RPG Language Meta-Model (ecore model) which describes every
possible feature of the defined RPG Domain. In our experiment this meta-
model is still small, however it could contain a lot more features that are
not relevant for analysis purposes (e.g. quest dialogs). Therefore we cre-
ated a Reduced RPG domain (RRPG Language), an ’intermediate’ language
which will work as a filter. It will only contain the essential entities needed
to check properties related to the petrinet analysis (e.g. it will not contain
obstacles and connections to obstacles.) RPG models will be transformed by
the RPG2RRPG transformation into a RRPG model.

In order to handle petrinet models, we had to create a Petrinet metamodel. A
RRPG2Petrinet transformation transforms the RRPG model into a petrinet
that is conform to the petrinet standards.

We decided to use the tool Pipe (PIPE2) to visualize our petrinets and
perform the analysis. The format that Pipe is able to read however, is a
bit different from the Petrinet metamodel. Here our last transformation
(Petrinet2Pipe) is used. We transform a general petrinet model into a tool-
specific model. In order to succeed in this, we also had to create a simplified
Pipe metamodel.

Since our models are in a xmi format and Pipe is only able to read spe-
cific xml files, we had to come up with a small python script. This script
only changes a few lines in the xmi file in order to make it work for pipe.

6

Figure 2: a depiction of our approach

6. Design

In this section we focus on the design of our metamodels (also known as
abstract syntax). We explain how eclipse offers a way to create them and
how you can create instance models from them.

6.1. Creating a metamodel

With the ATL plugin and EMF (Eclipse Modeling Framework) installed,
one can easily create a new metamodel by selecting new->other->eclipse
modeling framework->ecore model. Creating these metamodels is done in a
text-based way. However the Eclipse modeling framework also offers a UML-
alike drag and drop visual editor, which can be accessed if you initiate an
ecore diagram file from the ecore file. Our metamodels are created this way.

6.2. RPG Metamodel

Figure 3 represents our RPG metamodel as ecore model, while Figure 4
gives a visual representation by showing it’s related diagram file.

7

Figure 3: The Ecore file that represents our RPG metamodel.

Figure 4: The RPG metamodel as diagram .

As seen from the diagram, a world can contain multiple scenes. Each
Scene consists of multiple tiles and multiple connectors, where each connec-
tor connects 2 tiles together. A tile can have an object. This Object class
is an abstract class, with the Key class, Door class, Goal class and Obstacle
class as its subclasses. A world has exactly one Hero which is located at a
specific Tile. Lastly, A key opens one specific door and a door teleports to
one specific Tile.

8

It is important to notice that we did not focus on creating a complex
full-blown RPG metamodel, we only focused on the part that is relevant to
our experiment. However you might notice that a hero, doors and keys can
have a name, which is unrelevant for a petrinet analysis. Also the obstacle
objects are of no use for this analysis. This is the main reason for a initial
transformation to a Reduced RPG model.

6.3. RRPG Metamodel

The Reduced RPG metamodel is comparable to the RPG metamodel,
but leaves out a few details that are not relevant for analysis purposes. We
present the diagram in Figure 5.

Figure 5: The RRPG metamodel as diagram .

One can notice that the name attributes from the Hero, World, Scene
and Object class are removed. Also the Obstacle class has been taken out.

9

6.4. Petrinet Metamodel

Our petrinet metamodel was based on the metamodel presented by Bar-
bero et al. (2007). It’s design is very straight forward and is shown in Figure
6.

Figure 6: The Petrinet metamodel as diagram.

6.5. Pipe Metamodel

Since the tool Pipe only allows petrinet files of a specific format, we had
to transform our petrinet models into a Pipe model. The Pipe metamodel
contains a lot more extra information compared to the standard Petrinet
metamodel (e.g. The Pipe metamodel also keeps graphics information, like
coordinates and orientation.). Figure 7 represent our Pipe metamodel.

10

Figure 7: The Pipe metamodel as diagram.

7. Implementation

7.1. The inital RPG model

Eclipse offers a way to create a dynamic instance of a metamodel. By
using this functionality we made our initial RPG model. By adding child/Si-
bling nodes and filling in their properties one can setup the model as they like.
Figure 8 represents the model that we used for this experiment. A graphical
representation is shown in Figure 9. Notice that the model is conform to the
RPG metamodel.

11

Figure 8: The initial RPG model used throughout our experiment.

Figure 9: The initial RPG model visual representation.

12

7.2. Transforming the RPG model into a RRPG model

The transformation from normal RPG model into a Reduced RPG model
is performed by our RPG2RRPG transformation definition. We will now
briefly present parts of our implementation in order to give an idea of the
internal working of ATL. We refer the interested reader to our full imple-
mentation code.

module RPG2RRPG;

create OUT : RRPG from IN : RPG;

The code above defines the metamodels for the input model and output
model.

helper context RPG!Scene def: getValidTiles : Set(RPG!Tile) =

self.tiles->select(c | not c.object.oclIsKindOf(RPG!Obstacle));

Helper functions allow us to navigate over the source model. In the above
example, the function getValidTiles, which is a method on the RPG!Scene
Object, returns the subset of Tiles of the Scene that do not have an obstacle
on it.

Since the RRPG model is very much alike the RPG model, most rules
will be a transformation from the RPG model into the comparable variant
of the RRPG model. It’s important to notice that in this transformation
definition each rule only creates one target object. For example:

rule Scene2RScene {

from

s : RPG!Scene

to

rs : RRPG!RScene (

tiles <- (s.getValidTiles),

connectors <- (s.getValidConnectors)

)

}

Here all Scene objects from the RPG metamodel are transformed into new
RScene objects from the RRPG metamodel. Their contained tiles property
however, will now be the result of the transformed valid tiles (the tiles that
have no obstacle on it.). Since there is no mapping for the name attribute of
the Scene, it will be removed in the Reduced RPG model.

13

rule Tile2RTile {

from

t : RPG!Tile (not t.object.oclIsKindOf(RPG!Obstacle))

to

rt : RRPG!RTile (

object <- t.object,

name <- t.name

)

}

The code above represents a rule with a guard expression. It will transform
all Tiles in the soure model, except those where the contained object is of
the type Obstacle. By removing those from the transformation and by not
adding them to the tiles property of RScene objects (see the previous rule),
we can easily get rid of the obstacle tiles. The same approach is used to get
rid of Connectors that link to and from tiles with obstacles on it.

7.3. Transforming the RRPG model into a Petrinet model

This transformation definition contains rules that create multiple target
objects in the same rule. This greatly increases complexity. We again present
some important aspects of this transformation definition:

helper def : id: Integer = 1;

The above helper, represent an integer variable, which is used to give unique
id values to each petrinet element. We made a distinction between RTiles
with and RTiles without a hero by using guard expressions. Depending on
the presence of a hero, a RTile would be transformed into a Place with
or without a token. For this we made 2 rules, namely: Tile2Place and
TileWithHero2Place. This all is possible, because the guard expression make
sure that a RTile can only be target of only one of these two rules (remember
that each source element can only be once the target of a transformation).
We present the TileWithHero2Place rule below:

rule TileWithHero2Place {

from

r : MM!RTile (r = thisModule.getHero.located)

to

p1 : MM1!Place

(

id <- thisModule.id,

tokens <- 1,

name <- r.name

)

do {

14

thisModule.id <- thisModule.id+1;

thisModule.elements <- thisModule.elements->including(p1);

}

}

The above example shows how each element receives an unique id by increas-
ing the id variable after each rule.

We present some more complex structures of our transformation in section
7.3.1 and 7.3.2.

7.3.1. Doors and keys

Modeling teleportation and the relationship of doors and keys required
some more advanced ATL knowledge. A RDoor object will be transformed
into an arc from the RTile that contains the door to a new transition and an
arc from that transition to the RTile to where the door should teleport the
hero to. This is shown in the following rule:

rule Door2DoorPlace {

from

r : MM!RDoor

using{

Tile : MM!RTile = thisModule.getTileFromObject(r);

}

to

a1 : MM1!Arc(

source <- (Tile) ,

target <- (t1),

id <- thisModule.id

),

t1 : MM1!Transition(

id <- thisModule.id+1

),

a2 : MM1!Arc(

source <- (t1),

target <- (r.teleports),

id<- thisModule.id+2

)

do {

thisModule.id <- thisModule.id+3;

thisModule.elements <- thisModule.elements->including(a1);

thisModule.elements <- thisModule.elements->including(t1);

thisModule.elements <- thisModule.elements->including(a2);

}

}

15

A RKey object on its turn is transformed into a KeyNotYetTaken and
KeyTaken place. A newly created arc connects the KeyTaken place with
the transition which was created by the RDoor object transformation. Here
one of the more complex features of ATL comes in the picture, namely: the
resolveTemp operation. This specific operation makes it possible to point,
from an ATL rule, to any of the target model elements (including non-default
ones) that will be generated from a given source model element by an ATL
matched rule. We present the Key2KeyPlace rule below:

rule Key2KeyPlace {

from

r : MM!RKey

to

p1 : MM1!Place

(

id <- thisModule.id,

tokens <- 0,

name <- ’KeyTaken’

),

a1 : MM1!Arc(

source <- p1,

target <- thisModule.resolveTemp(r.opens,’t1’),

id <- thisModule.id+1

),

p2 : MM1!Place

(

id <- thisModule.id+2,

tokens <- 1,

name <- ’KeyNotYetTaken’

)

do {

thisModule.id <- thisModule.id+3;

thisModule.elements <- thisModule.elements->including(p1);

thisModule.elements <- thisModule.elements->including(a1);

thisModule.elements <- thisModule.elements->including(p2);

}

}

The last part that is needed to make doors and keys work as petrinet
model is done by the rules: Connection2Move and Connection2MoveToKey.
These transform the RRPG RConnectors into a petrinet connection between
it’s connecting places. A Connection2Move will simply create a transition
and 2 arcs that connect it’s places with the transition. It is used for RCon-
nectors that go towards RTiles that have no object or a RDoor object on it.
A Connection2MoveToKey on the other hand is used for RConnectors that
have as target a RTile that contains a RKey. It will create arcs and tran-
sitions and connects them with the KeyTaken and KeyNotYetTaken place
accordingly.

16

The idea is to end up with something like Figure 10. In case the key is
taken it will allow the hero to teleport from place f3 (which represents the
tile with a door) towards place c1.

Figure 10: A petrinet concept of the use of keys and doors.

7.3.2. Goals

Since we can only win when all goals are taken, we should also model this
into our petrinet. A single place should indicate if the hero has won or not.
We used the RHero object transformation for this, since there can be only
one RHero object in the RWorld. We show the rule below:

rule Hero2Setup{

from

h : MM!RHero

to

w : MM1!Place(

id <- thisModule.id,

tokens <- 0,

name <- ’Won’

),

gf : MM1!Place(

id <- thisModule.id+1,

tokens <- 0,

name <- ’GoalsFound’

),

gl : MM1!Place(

id <- thisModule.id+2,

17

tokens <- thisModule.amountOfGoals,

name <- ’GoalsLeft’

),

a1 : MM1!Arc(

source <- (gf) ,

target <- (t1),

weight <- thisModule.amountOfGoals,

id <- thisModule.id+3

),

t1 : MM1!Transition(

id <- thisModule.id+4

),

a2 : MM1!Arc(

source <- (t1),

target <- (w),

id<- thisModule.id+5

)

do {

thisModule.id <- thisModule.id+6;

thisModule.elements <- thisModule.elements->including(w);

thisModule.elements <- thisModule.elements->including(gf);

thisModule.elements <- thisModule.elements->including(gl);

thisModule.elements <- thisModule.elements->including(a1);

thisModule.elements <- thisModule.elements->including(t1);

thisModule.elements <- thisModule.elements->including(a2);

}

}

A Won, GoalsFound and GoalsLeft place will be created by the above rule.
Once all goals are found a transition will be enabled that goes from Goals-
Found towards Won.

Each RGoal will be transformed in a GoalTaken place and GoalNotYet-
Taken place, which is comparable to the transformation of RKeys. They
however also generate a CheckMoreGoals place.

Each time a goal is picked up, a token of GoalsFound will be consumed,
the token that represents the hero’s location will be moved to the Check-
MoreGoals place, where the petrinet will check if there are still goals left. A
transition will go from the CheckMoreGoals place to the place that resembles
the tile where the goal is located if there are still goals left. If there are none
left, only the transition that goes to Won will be enabled. We try to visualize
this complex process in Figure 11

18

Figure 11: A visual representation of how the goal system is modeled.

7.4. Transforming the Petrinet model into a Pipe model

The process of transforming a Petrinet into a Pipe model is very straight
forward since it is a 1-to-1 mapping of the Arcs, Transitions and Places. Each
rule creates a few extra elements that are required by the Pipe framework.
For example:

rule Place2Place{

from

p : MM!Place

to

pn : MM1!Place(

id <- p.id.toString(),

graphics <- g1,

name<-n,

initialMarking<-im

),

g1 : MM1!Graphics(

position <- pos

),

pos : MM1!Position(

x <- ’10’,

y <- ’10’

),

v : MM1!Value(

result<-p.name

),

n : MM1!Name(

value <- v,

graphics <- g2

19

),

g2 : MM1!Graphics(

),

im : MM1!InitialMarking(

value<-v2,

graphics<-g3

),

v2 : MM1!Value(

result<-p.tokens.toString()

),

g3 : MM1!Graphics(

)

}

7.5. From XMI to XML by using a Python Script

Since Pipe only allows specific XML files, we had to change a few lines
in the XMI file to make it compatable. By using the PipeXSI2PipeXML.py
script we end up with an analysable Petrinet. We included the code of our
python script as appendix to this paper.

20

8. Resuls

By performing the 3 ATL transformations and the python script on the
initial RPG model, which we introduced at the start of section 7, we end up
with the petrinet depicted in Figure 12

Figure 12: The resulting petrinet.

By performing a state space analysis in Pipe we discovered the shortest
path, which is shown in Figure 13. One can also perform an invariant analysis
and more.

Figure 13: The state space analysis of the petrinet.

21

9. Conclusion and future work

9.1. Conclusion and comparison

In this paper we presented an ATL experiment where we transformed
a RPG model into a working and analyzable petrinet. We were sceptic at
the start, but the success of our experiment made us believe in the power
of ATL. Moreover, we believe that ATL is the perfect tool for performing
small/medium sized 1-to-1 mapped transformations. Our RPG to Petrinet
and more specifically the RRPG2Petrinet transformation definition is in the
gray area, it starts to show why ATL is not the perfect language for this
kind of transformations, namely: the amount of rules and their size starts
to become large, the creation of multiple target elements tends to make it
complex and the lack of visual nature. We also tried to find a way to add
constraints to our metamodel, however there does not seem to be a proper
way to do this.
If we compare ATL to other model transformation languages and tools, like
for example AtomPM (Syriani (2009)), we can cleary state that a visual repre-
sentation of a rule can make it a lot more comprehendable and readable. The
creation of the metamodel (abstract syntax) in ATL can be however simular
to how it is done in AtomPM, by using the EMF diagram editor. Another
major difference between AtomPM and ATL is the fact that AtomPM allows
to execute rules separately by write an execution scheme of the rules. While
ATL simply executes all rules on their matched elements at the same time.
If we compare their environments we could conclude that both are not easy
to setup. ATL has a lot of outdated information, while AtomPM is a rather
new tool that misses a large active community behind it. We think however
that a tool like AtomPM could clear the job in a significant less amount of
time and still end up being more readable, reuseable and understandable,
not only towards the creators/developers but also non-technical people.

9.2. Future work

Our RPG to petrinet experiment can be extended in many ways. First
of all the RPG DSL could be enlarged, this allows the creation of complexer
models. The game can be turned into a turn based version, where villains try
to kill the hero. Traps can be included and much more. These new features
require more complex structures in the RRPG2Petrinet transformation. E.g.
Health and damage can be represented as tokens in the petrinet. Another
extension could be code generation from our RPG DSL.

22

Appendix A. PipeXSI2PipeXML.py

#!/usr/bin/python

import sys

#USAGE! :

arg1 is XMI file that has to be adapted in order to be able to open in Pipe

arg2 is to-be-made XML file that can be opened in pipe

arg1 = str(sys.argv[1])

arg2 = str(sys.argv[2])

f2 = open(arg2,’w’)

#open eclipsecommand file

with open(arg1) as f:

#go through each line

for line in f:

#change line in case it’s needed

if (line.find("<Pipe:pnml") != -1):

line = "<pnml>"

elif (line.find("</Pipe:pnml") != -1):

line = "</pnml>"

elif (line.find("<value result=") != -1):

splitted = line.split(’"’)

value = splitted[1]

line = "<value>"+value+"</value>"

elif (line.find("</value>") != -1):

line = "<value>0</value>"

#write line to output

f2.write(line)

f2.close()

23

References

abidredlove, 2009. abidredlove youtube channel @ONLINE. URL:
http://www.youtube.com/user/abidredlove?feature=watch.

Allilaire, F., Bzivin, J., Jouault, F., Kurtev, I., 2006. Atl – eclipse support
for model transformation, in: IN: PROC. OF THE ECLIPSE TECHNOL-
OGY EXCHANGE WORKSHOP (ETX) AT ECOOP.

Araújo, M., Roque, L., 2009. Modeling games with petri nets. Breaking New
Ground: Innovation in Games, Play, Practice and Theory. DIGRA2009.
Londres, Royaume Uni .

Barbero, M., Jouault, F., Gray, J., Bézivin, J., 2007. A practical approach
to model extension, in: Model Driven Architecture-Foundations and Ap-
plications, Springer. pp. 32–42.

Brom, C., Abonyi, A., 2006. Petri-nets for game plot, in: Proceedings of
AISB artificial intelligence and simulation behaviour convention, Bristol,
pp. 6–13.

Bzivin, J., Dup, G., Jouault, F., Pitette, G., Rougui, J.E., 2003. First
experiments with the atl model transformation language: Transforming
xslt into xquery, in: 2nd OOPSLA Workshop on Generative Techniques in
the context of Model Driven Architecture.

Furtado, A.W.B., de Medeiros Santos, A., 2006. Sharpludus: improving game
development experience through software factories and domain-specific
languages. Universidade Federal de Pernambuco (UFPE) Mestrado em
Ciência da Computação centro de Informática (CIN) .

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., 2008. Atl: A
model transformation tool. Sci. Comput. Program. 72, 31–
39. URL: http://dx.doi.org/10.1016/j.scico.2007.08.002,
doi:10.1016/j.scico.2007.08.002.

Marques, E., Balegas, V., Barroca, B.F., Barisic, A., Amaral, V.,
2012. The rpg dsl: A case study of language engineering using mdd
for generating rpg games for mobile phones, in: Proceedings of the
2012 Workshop on Domain-specific Modeling, ACM, New York, NY,

24

USA. pp. 13–18. URL: http://doi.acm.org/10.1145/2420918.2420923,
doi:10.1145/2420918.2420923.

PIPE2, . Pipe2 website @ONLINE. URL:
http://pipe2.sourceforge.net/.

Reyno, E.M., Carśı Cubel, J.A., 2009. Automatic prototyp-
ing in model-driven game development. Comput. Entertain. 7,
29:1–29:9. URL: http://doi.acm.org/10.1145/1541895.1541909,
doi:10.1145/1541895.1541909.

Syriani, E., 2009. Atompm @ONLINE. URL:
http://syriani.cs.ua.edu/atompm/atompm.htm.

Walter, R., Masuch, M., 2011. How to integrate domain-specific languages
into the game development process, in: Proceedings of the 8th Interna-
tional Conference on Advances in Computer Entertainment Technology,
ACM. p. 42.

Wang, J., 2007. Petri nets for dynamic event-driven system modeling. Hand-
book of Dynamic System Modeling , 1–17.

25

