Modelling language engineering with GME
Report I - Reading part

Daniel Dragojevic

University of Antwerp
daniel. dragojevic@student. uantwerpen.be

Abstract

This paper describes the Generic Modeling Environment (GME), a config-
urable graphical modeling toolsuite that supports the creation of domain spe-
cific modeling, model analysis and program synthesis environments. More-
over, it gives a brief explanation of the procedure for the implementation of
the role playing game project.

Keywords: Generic modeling environment, GME, modeling, MetaGME,
metamodeling, role playing game, RPG

1. INTRODUCTION

Generic Modeling Environment (GME) [1] is a meta programmable, do-
main specific, graphical editor supporting the design, analysis and synthesis
of complex software intensive systems. GME is developed at the Institute
for Software Integrated Systems (ISIS) at Vanderbilt University.

GME supports higher level abstractions than general purpose program-
ming languages (such as C++/C and Java) and general purpose modeling
languages (such as UML), so they require less effort and fewer low level
details to develop a given system. GME also allows users to define new mod-
eling languages using metamodels, which describe the rules, constraints, and
concepts applicable and useful for modeling a class of problems.

[will use capabilities of GME to model a role playing game (RPG) sim-
ilar to one in the course Model driven engineering. My previous modelling
experience was with metaDepth [2] and AToMPM [3] tools which gives me

Preprint submitted to Model Driven Engineering 20.12.2013

opportunity to compare different (or similar) concepts and principles of this
tools during the implementation.

To summarize, aim of this paper is to give the brief explanation and
concepts of Generic Modelling Environment and an idea for further work
with this tool. Section 2 gives GME overview. Section 3 gives description and
starting point for project implementation. Section 4 concludes this paper.

2. GME OVERVIEW

In this section, I first give the technical overview of GME. Moreover, I
describe the MetaGME paradigm which we can use to create metamodels
with GME tool.

2.1. Introduction to GME

The first thing one must do using GME is define a sketch of a metamodel,
which is basically a Unified Modeling Language (UML) Class Diagram ex-
tended with some additional concepts. These additional concepts include
defining any necessary Object Constraint Language (OCL) constraints and
also some GME specific features such as configurable model visualization
properties. After the metamodel is initially defined, it can be iteratively re-
fined until it reaches a mature state that captures all pertinent features of
the domain.

2.2. Technical Overview

In this subsection I will show the technical overview of GME. Figure 1
shows a modular, component-based architecture of this tool. I will explain
each of GME components based on information from the paper The Generic
Modeling Environment [1] and GME Manual and User Guide [4].

Storage: The thin storage layer includes components for the different
storage formats. Supported formats are proprietary binary file format and
an XML format.

Core component: This component implements the two fundamental build-
ing blocks of a modeling environment: objects and relations. Among its
services are distributed access (i.e. locking) and undo/redo.

MgaMeta and MgaModel: This two components use the services of the
Core. The MgaMeta defines the modeling paradigm, while the MgaModel
implements the GME modeling concepts for the given paradigm. The Mg-
aModel uses the MgaMeta component extensively through its public COM

COM COM
GME Editor
Browser _o/ \A°_ Constraint
l Manager
Add-0n(s) \ / Interpreter(s)
~ com e
2 ——*¢ -
GModel |— | GMeta |« XML |« Metamodel I
XML V
Generic H|||::d(:;|(;|:a Environment Paradigm Definition UML / OCL

Storage Options

Figure 1: Modular, component-based architecture of GME

interfaces. The MgaModel component exposes its services through a set of
COM interfaces as well.

Add-ons: They are event-driven model interpreters. The MgaModel com-
ponent exposes a set of events, such as "Object Deleted,” ”Set Member
Added,” 7 Attribute Changed,” etc. External components can register to re-
ceive some or all of these events. They are automatically invoked by the
MgaModel when the events occur. Add-ons are extremely useful for extend-
ing the capabilities of the GME User Interface. When a particular domain
calls for some special operations, these can be supported without modifying
the GME itself.

Constraint Manager: This manager can be considered as an interpreter
and an add-on at the same time. It can be invoked explicitly by the user
and it is also invoked when event-driven constraints are present in the given
paradigm. Depending on the priority of a constraint, the operation that
caused a constraint violation are aborted. For less serious violations, the
Constraint Manager only issues a warning message.

User Interface: This component has no special privileges in this archi-
tecture. Any other component (interpreter, add-on) has the same access
rights and uses the same set of COM interfaces to the GME. Any operation
that can be accomplished through the GUI, can also be done programmati-

cally through the interfaces. This architecture is very flexible and supports
extensibility of the whole environment.

2.8. MetaGME

GME metamodels must be created using the MetaGME paradigm, which
is installed and registered with GME. Metamodeling level of GME provides
generic modeling primitives that assist an environment designer in the specifi-
cation of new modeling environments. These concepts are directly supported
by the framework as stereotypes of the specific classes.

Project
1
Constraint | Folder
[T o

[Regnode 0.r 1 'j
]‘0::

Adtribute FCO Role Part

referred o= o=
ConnRole

+ 4
o
4

B .
Reference Atom Connection Model Aspect

Base | Inst

Set

2

AL =l

|;|
= |
= =

Figure 2: GME modeling concepts

A Project contains a set of Folders. Folders are containers that help
organize models. Folders contain Models. Models are used to represent a
container element. They can have parts and inner structure. A part in
a container Model always has a Role. The modeling paradigm determines
what kind of parts are allowed in Models acting in which Roles, but the
modeler determines the specific instances and number of parts a given model

contains. Atoms are used to represent an atomic element, i.e. they do
not contain other objects. Associations are modeled using the Connection
primitive that is visualized by the modeling tool as a line between the objects.
Connections are used to express relationships between objects at the same
hierarchy level or one level deeper. To overcome this limitation we can use
References to associate objects in different model hierarchies. Connections
and References model relationships between at most two objects. To group
more elements we can use Sets.

Atoms, models, connections, references and sets are called the First Class
Objects (FCO) in GME. FCOs can contain both textual Attributes and Con-
straints, which are OCL-based expressions for providing verifiability for the
models. Another important concept in GME is the Aspect (viewpoint). Ev-
ery model has a predefined set of Aspects and each part has option to be
visible or hidden. Figure 2 shows GME modeling concepts.

3. ROLE PLAYING GAME

In this section I present an overview of role playing game and the proce-
dure which I will follow for the implementation of this project. This section
will be covered in greater detail in the final project report.

3.1. Role playing game overview

The structure of an RPG is imagined as a world map which contains one
or more scenes (levels). In each scene, there are a number of connected tiles.
Scenes are connected with doors which can be locked. Tiles can contain
one of the characters or other tile occupants as obstacles, weapons, health
potions, keys, traps and goals. Simple RPG example is presented on the
following figure.

There are two types of characters: hero and villain. Hero is main char-
acter which moves through scenes, fights villains and collects items. Game
ends when hero collects all goals or dies. Characters cannot pass or step on
the obstacles. The weapon gives additional strength to the hero. The health
potion renews heros health value. Hero needs keys to open locked doors.
Some doors will be unlocked and some will need multiple keys to unlock
them. Traps can hurt hero if he steps on them. Hero will need to collect all
goals to successfully finish the game.

‘World map opens

—-—-—

Scene 1 : i Scene 2
LJ
" K [[SqSSSceRSie . _|/SEE—— » D T
0 P 0
W H T G v

H - Hero, V - Villain, T - Trap, O - Obstacle, W — Weapon, P - Potion, K - Key, D - Door, G - goal

Figure 3: RPG example with two scenes

3.2. Constraints

The RPG meta model needs to be enriched with constraints to check if
models are well formed. For example some of necessary constraints in the
RPG game are that tiles needs to be well connected, there can be only one
hero in the game, all values (health, strength) must be positive. More ideas
will be implemented and reported during the further work.

3.3. Comparison with other domain specific modeling tools

This subsection is added as a guideline for the further work. Previous
modelling experience with metaDepth and AToMPM during the implemen-
tation of RPG formalism gives me opportunity to compare concepts and
principles of this tools with GME. My findings will be reported in the next

paper.

4. CONCLUSION

Generic Modeling Environment is a flexible, generic, modeling environ-
ment useful for developing domain specific modeling toolsets. GME has
a metamodeling interface for specifying the domain specific languages. It
provides model construction facilities and automatic constraint satisfaction
verification. GME has varied interfaces for developing model transformation
tools. This gives us a freedom to model any project on easy and graphi-
cal way. In my case, role playing game will be build with this tool with
additional improvements with some other programming languages (Java or
Python). In this early stage it is not possible to conclude anything more
about implementation process. This part will be covered in the next report.

5. REFERENCES

1]

A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G.
Nordstrom, J. Sprinkle and P. Volgyesi The Generic Modeling Environ-
ment. Workshop on Intelligent Signal Processing, Budapest, Hungary,
2001.

J. de Lara and E. Guerra. Deep meta-modelling with metadepth. 48th
International Conference, TOOLS’10, Mlaga, Spain, 2010.

E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo and
H. Ergin. AToMPM: A Web-based Modeling Environment. MODELS’13
Demonstrations, CEUR, Miami FL, USA, 2013.

Institute for Software Integrated Systems, Vanderbilt University. GMFE
Manual and User Guide. Nashville, USA, 2013.

