
Visual Layout of 

Graph-Like Models
TAREK SHARBAK

MHDTAREK.SHARBAL@STUDENT.UATNWERPEN.BE



Introduction

 Visual development makes creating 

complex software a breeze

 The graphical layout of the modelling 

tools helps with the model 

comprehension

 Domain-Specific modelling languages 

need a dynamic layout behavior



Visual Layout

 Treat models as graphs

 Many aspects that can make different 

graphs easier to read and modify

 Trying to reach an optimization between 

visual aesthetics

 Use of modelling to model the behavior 

of the UI of domain specific formalisms



Related Word

 This project was based on the work of 

Denis Dube in his thesis “Graph Layout for 

Domain-Specific Modeling”

 The implementation is based on an 

implementation of rapid UI development 

using statecharts by  Detlev Van Looy



Related Work

 In Detlev Van Looy’s project, he designed 

a GUI implementation for a statecharts

builder along with the abstract syntax 

and concrete syntax of the UI written in 

python.

 In this project I reused the components 

and adapted them to suit my application 

of making a behavioral UI for the RPG 

game



RPG Abstract Syntax

 Written with python

 A class definition for each element of the 

game (Scene, Standard Tile, Obstacle, 

Hero, and Goal)

 The implementation of the RPG is minimal 

since the focus is on the behavioral UI 

using statecharts



RPG Graphical Interface

 Written in Python

 Use of drawing and positioning functions

 The UI buttons that are used to create the 

entities



RPG Graphical Interface



Behavioral Statecharts

 Implementing the UI behavior using 

statecharts allowed for a very flexible 

implementation

 I could reuse a lot of the components of 

Detlev’s work and adapt it to my needs 

and fix any issues that existed.



Main Component

 Hierarchical 

Statecharts

 Implemented 

using AToM3



Creation of Entities and 

Edges



Handling the specific 

entities behaviors

 Some elements like (Scene and Standard 

Tile) can contain other elements

 This required specific handling of each 

entity

 When moving an entity that holds other 

entities, all of the elements should move 

along

 Like wise, if we delete a scene that has 

many tiles, all of the tiles along with their 

items should get deleted



Overview

 Using statecharts to implement the 

behavior of the UI elements makes 

understanding the UI much easier and 

thus modifying it later on or adding more 

components to it

 The actual drawing and display in this 

project was done in Python code, where 

the statecharts communicate with the 

code via triggers and actions



Conclusion

 Understanding how using models to 

implement the UI behavior can increase 

productivity and decrease complexity

 Writing code is prone to errors and bugs

 The need for a unified framework that 

binds the graphical UI elements with their 

behavior

 This will guaranty less coding and thus 

faster production and easy maintenance 



References

 Dubé, Denis. "Graph Layout for Domain-Specific 

Modeling." (2006): 107.

 Denis Dubé, Jacob Beard, H. Vangheluwe, 2009. 

Rapid development of scoped user interfaces 


