
Visual Layout of

Graph-Like Models
TAREK SHARBAK

MHDTAREK.SHARBAL@STUDENT.UATNWERPEN.BE

Introduction

 Visual development makes creating

complex software a breeze

 The graphical layout of the modelling

tools helps with the model

comprehension

 Domain-Specific modelling languages

need a dynamic layout behavior

Visual Layout

 Treat models as graphs

 Many aspects that can make different

graphs easier to read and modify

 Trying to reach an optimization between

visual aesthetics

 Use of modelling to model the behavior

of the UI of domain specific formalisms

Related Word

 This project was based on the work of

Denis Dube in his thesis “Graph Layout for

Domain-Specific Modeling”

 The implementation is based on an

implementation of rapid UI development

using statecharts by Detlev Van Looy

Related Work

 In Detlev Van Looy’s project, he designed

a GUI implementation for a statecharts

builder along with the abstract syntax

and concrete syntax of the UI written in

python.

 In this project I reused the components

and adapted them to suit my application

of making a behavioral UI for the RPG

game

RPG Abstract Syntax

 Written with python

 A class definition for each element of the

game (Scene, Standard Tile, Obstacle,

Hero, and Goal)

 The implementation of the RPG is minimal

since the focus is on the behavioral UI

using statecharts

RPG Graphical Interface

 Written in Python

 Use of drawing and positioning functions

 The UI buttons that are used to create the

entities

RPG Graphical Interface

Behavioral Statecharts

 Implementing the UI behavior using

statecharts allowed for a very flexible

implementation

 I could reuse a lot of the components of

Detlev’s work and adapt it to my needs

and fix any issues that existed.

Main Component

 Hierarchical

Statecharts

 Implemented

using AToM3

Creation of Entities and

Edges

Handling the specific

entities behaviors

 Some elements like (Scene and Standard

Tile) can contain other elements

 This required specific handling of each

entity

 When moving an entity that holds other

entities, all of the elements should move

along

 Like wise, if we delete a scene that has

many tiles, all of the tiles along with their

items should get deleted

Overview

 Using statecharts to implement the

behavior of the UI elements makes

understanding the UI much easier and

thus modifying it later on or adding more

components to it

 The actual drawing and display in this

project was done in Python code, where

the statecharts communicate with the

code via triggers and actions

Conclusion

 Understanding how using models to

implement the UI behavior can increase

productivity and decrease complexity

 Writing code is prone to errors and bugs

 The need for a unified framework that

binds the graphical UI elements with their

behavior

 This will guaranty less coding and thus

faster production and easy maintenance

References

 Dubé, Denis. "Graph Layout for Domain-Specific

Modeling." (2006): 107.

 Denis Dubé, Jacob Beard, H. Vangheluwe, 2009.

Rapid development of scoped user interfaces

