Visual Layout of Graph-Like Models

Tarek Sharbak
mhdtarek.sharbak@student. uantwerpen.be

University of Antwerp, Belgium

Abstract

Visual modeling makes designing and implementing complex systems an
efficient process and drastically decreases errors and complexity. Moreover,
Domain-Specific modelling constrains the modeler to only use what the
language offers, which makes the model limited to the problem set in hand
and closer to the mind-set of the specialized modeler. However, complex
systems models tend to have many visual elements and thus can be difficult
to comprehend if not properly laid out.

Keywords: Statechart, Graph, Domain-Specific Language

1. Introduction

Visual formalisms are used to create models of problems and simulate
the real world. The main difference between visual formalisms and textual
ones is obviously the fact that visual formalisms use graphical icons and
arrows to represent the entities of the model. These icons and arrows have
a visual layout from which the user can extract information. Users should
be able to understand these models at a glance. Therefore, a poor layout
would make a model very difficult to read, this brings the need for a good
layout support in visual modeling tools.

Most visual modeling tools use hard-coded and inflexible layout
behavior. However, the main goal here is to come up with a framework to
model the reactive behavior of visual modeling environments that support
multi-formalisms. The models are considered to be graphs and to come up
with a good graph drawing algorithms; one has to have a thorough
knowledge of graph theory and the existing literature of graph drawing
techniques.

In section 2 and 3, I summarize the thesis of Denis Dubé [1] and discuss
the layout of graph-like models and the aesthetics that need to be taken

into consideration to make models easier to understand. In section 4, I will
lay out the details of the implementation that [did based on “Rapid
Development of Scoped User Interface” [2] [3], in which T used statecharts
to model the behavior of the different visual elements of the simple RPG
implantation that is written in Python. And a conclusion will be made in
section 5 of this paper.

2. Graph Basics and Layout

Domain-Specific models of a certain formalism are constrained
according to the design and purpose of that formalism, such that the user
will only be able to create models that confirm to the Domain-Specific
language being used. Models can be viewed as graphs, and the constraints
of the models are reflected as different types of graphs; some are directed
graphs where the edges between the vertices have a certain direction and
an edge between vertex A and vertex B is distinguished from the edge
between B and A. In addition to that, a model can be constrained by how
many vertices is allowed to be created in the model, etc...

2.1. Visual Aesthetics

Visual aesthetics are the measurable qualities of a drawing. A good
graph drawing technique is the one which optimizes the use of these
aesthetics to reach an optimal drawing. Different Domain-Specific
formalisms require a specific balance of these aesthetics, which requires the
use of multiple drawing algorithms in multi-formalisms visual modeling

tools like AToM? and now AToMPM. Visual aesthetics are [1]:
e Graph Area
e Vertex Placement
e FKdge Crossings
e FEdge Bends
e Direction of Flow
e [dge Length
e Mental Map

e Vertex Connections

2.2. Graph Drawing Techniques

As mentioned before, different drawing algorithms are to be used to
reach an optimal model drawing for each specific type of models, I review
here some of these algorithms [1]:

Layered: Widely used and offers relatively easy implementation and
covers a wide range of visual aesthetics. It however constraints the
graph to be a digraph (directed graph), to have an overall direction
of flow, and to be acyclic (does not contain any cycle).

Force-directed: This technique is based on virtual physics models.
The simulation of graphs as these physical objects will yield a good
layout. This technique simulates vertices as molecules and virtual
forces created where edges exist.

Orthogonal: Orthogonal drawings are typically drawn as a grid
where vertices and edges are assigned integer numbers as
coordinates, and they are connected with horizontal and vertical
lines. Orthogonal drawing techniques produce good layouts because
they optimize a wide range of visual aesthetics.

Linear Constraints: Linear constraints provide a declarative
approach to layout, and it requires a mathematical linear solver to
work. Many implementation of linear constraints have been done
for graph layout and even the use of a non-linear solvers has been
introduced to solve non-linear problems.

Ezxpensive Methods: Other methods for graph drawing are very
computational expensive. However, some of these techniques are
ideal for certain formalisms. These methods are, Simulated
annealing, Genetic algorithms, and Rule-based techniques.

Other Techniques: Less common techniques for graph drawing like
3D layout, Circular, Competitive learning, Multi-dimensional,
Graph grammars, Edge routing, and Graph browsing.

3. Formalism-Specific Ul and Layout Behavior

Tools like AToM3, which supports multi-formalisms, require more
robust and dynamic layout behavior algorithms. AToM3, which
philosophy is to model everything, uses a generic user-interface behavioral
model in statecharts to model the behavioral layout of the basic visual

modeling environment. This generic model can be later refined and
extended by layout behavior of a specific formalism [1].

Domain-Specific modeling allows the modeler to analyze the system
within the specific mental model of the problem, and it constraints the
modeler and allows only valid models to be created. In AToM3, all four
aspects of any given formalism are modeled explicitly; the abstract syntax
and the concrete syntax of the formalism are static in nature, so they are
modeled using Class Diagram or Entity Relationship formalism. However,
the operational semantics and the reactive behavior are dynamic, thus they
are modeled mostly using graph transformations. The reactive behavior
defines how a certain model reacts to a sequence of input events, like mouse
or keyboard clicks.

3.1. Generic Ul Behavior

The entire generic-layout behavior of AToM3 is shown in Figure 1 created
using statecharts. This approach has the advantage of being easily
modifiable and completely isolated from other layout behavior models,
such an advantage that would be difficult to do if the user interfaces were
hard-coded [1].

3.2. Formalism-specific Behavior

Formalism-Specific reactive behavior allows for easy modification to the
parts of the generic-layout behavior that require special implementation.
To reach that goal, we need to identify a formalism scope within the
environment so that the application’s main loop would direct the event to
the specific behavior layout when the mouse cursor is inside that scope.
We can achieve that by having a virtual entity in the formalism that
contains the visual objects of that formalism and thus defines the scope of
that formalism. However, some events require the user to move the mouse
outside the scope of the formalism while keeping this scope active, we can
do that by introducing “locks”, which can simply lock the event loop and
effectively direct all input to the specific layout behavior statechart.

Actten Evert Loop

Frpap Mon.
Larpewt e
Trane Mamu
Model Mamu
WMicde Mer
Fila Meru

Modal Acion

Nofies

Bhow Comcle
Upen Matarcdal
Smoots Lefuut
Cowa Matarcdal
Facem Model
Hecert Wrtemodel
Eource Petts
HAnboot
Clew Carmias
Teggle Lubel Drag
Snap Grid Toggla
Ao Dpraer
Spring Layout
Foroa Layost
Zrom Layosd
Edft Uverlac:
S Frogeriies

Crawtm Naw &m0

Baluct Al

Finksh Scee Woton
P——— rne Gomla
Sl Salncion "
Wzizn
Finmh Bosle Hooward Sl
Scale Text
Postecspt Fowberist .
(R
Uzra
Lone Sainct Foint

: AP L
G0 Selert Bounding Box Ecit
m.

GG Graph Selagt

S
Exil Ao 2
Arroee Edilor

Leweiact AS
Copy
(=T
Cagy Abritutm
Fomim AbriZutes
Bmooch
Linde:
Amdc
Maowe Lak
Novs Hight
W Dorae
Wrrea Lz
Jelatehiaua
i niaiat e v

“marvraticdaDeleieR equesT
=aarvicalinkDeleisFoaquest

Figure 1: Generic user-interface behavior statechart

4. Implementation

For this project I based my work on the work done by Detlev Van
Looy [3]. T followed the path that he followed by creating a scoped Ul
statechart that reflects the behavior of the RPG game and then I modified
the drawing code accordingly.

4.1. Role Playing Game

For this project I had to recreate a simple RPG in Python, consisting
of the abstract syntax of the entities of the RPG as classes (Scene,
Standard Tile, Obstacle, Hero, and Goal). After that, I created a simple
GUI that will be the modelling environment of the RPG game, Figure 2
shows the buttons used by the GUI to draw the elements of the game on

the canvas.

The user can click on any of the buttons and then click a combination
of keys (Ctrl + Right Mouse Button) to draw the selected element on the
canvas. This behavior is specified using the scoped statecharts and will be
shown later. Some entities have associations between each other (Scene
contains Tiles and Tiles contains Heroes or Goals), these associations can
be created by clicking (Ctrl 4+ Left Mouse Button) and then clicking on
the source element and dragging the edge to the destination and then
pressing (Left Mouse Button) to create the association.

Figure 2: Button controls of the GUI

Scenel

Herol

. @
Goall

Figure 3: Showing the GUI of the visual development interface of the
RPG

4.2. Scoped Behavior Statechart

Implementing the UI behavior using statecharts allowed for a very
flexible implementation and extremely high reusability of the models. The
behavior statecharts were implemented using AToM?®. The main
component of the statechart shown in Figure 5 handles the main loop of
the program and its actions are activated when the user clicks on any of
the controls in Figure 2, according to the selected button, the statechart
will move to one of the modes (Standard, Scene, Goal, Hero, and Obstacle)
where the user can then create on the canvas by pressing the combination
(Ctrl + Right Mouse Button). When the user chooses another button, a
“reset” event is sent to the statechart followed by the selected button
action.

Button_Behaviour

DChartActions

=<Reset=

=<Create=*
<StandardButton= Standard_Mode
=5ceneButton= =Create=*
Scene Mode
Idle
=GoalButtons] Q *
Goal_Mode “Createx

D<Cre:—|te="

Hero_Mode

Obstacle_Mode 3~

I Behaviolr

Figure 5: The Buttons behavior statechart

The second statechart in Figure 5 shows the behavior of the GUI when
the user does one of the following actions (Selecting an entity, delete, move,
create, deselect, or create an edge between two entities). Hence that the
create state can only be reached if the previous statechart was not in the
idle state, which means that the user has selected an entity to create from
the button toolbox.

Create_DChart_Entity+

=ControlButtonPress 1=

=ControlButtonPress3=)
=AnyMotion=

Idle?

=Deselect=+ n
x“ .
=Select= I BulonPressi=" Creating_Edge*
: Create_Edge |
=Contain=+ -

=Delete=+

=ButtonRelease1=
=Move=

=AnyMotion=
Figure 4: Statechart that handles (create, select,

deselct, move, delete, create edge) actions

8

When the controller sends a select, deselect, contain, or delete trigger,
a different specified statechart for each entity type, depending on the
selected entity, receives that action and continues the work from there by
sending the desired actions back to the drawing controller. This way of
implementation showed me that I had to duplicate the statecharts as many
as the controls I have. In my case I only had to do 5 duplicates (with minor
changes) for each entity. However, when the project gets bigger, this
implementation is inefficient and the need to use a more effective
implementation arises. Another challenge was the need to hard-code the
abstract and concrete syntax, which yielded in so many bugs and errors
and thus were difficult to maintain.

5. Conclusion and Future Work

Complexity of defining a user interface behavior of models can be
dramatically decreased by modeling the UI behavior using statecharts.
Such technique insures high reusability and much less errors and bugs in
the design. However, the approach that I took in this project was not the
optimal solution for the problem at hand. A layered based implementation
with a generic Ul behavior and extending that with formalisms specific
behaviors for each entity in the models as described in Dubé’s thesis [1]
would have been the better choice. Therefore, as a future work for this
project, I suggest modelling the abstract syntax and concrete syntax of the
RPG instead of hard-coding them, which can help with the verification of
the Ul elements over their corresponding definitions, and then dividing the
behavior statecharts into a more well-defined layered behavior statecharts,
where all entities have a shared behavior, which will eliminate the
redundancy in my implementation, and a specific behavior statecharts for
the extended behaviors of these entities.

References
[1] D. Dubé, "Graph Layout for Domain-Specifc Modeling," 2006.

[2] D. Dubé, J. Beard and H. Vangheluwe, "Rapid Development of
Scoped User Interfaces".

[3] D. Van Looy, "UI Development Using Statecharts".

	Abstract
	1. Introduction
	2. Graph Basics and Layout
	2.1. Visual Aesthetics
	2.2. Graph Drawing Techniques

	3. Formalism-Specific UI and Layout Behavior
	3.1. Generic UI Behavior
	3.2. Formalism-specific Behavior

	4. Implementation
	4.1. Role Playing Game
	4.2. Scoped Behavior Statechart

	5. Conclusion and Future Work
	References

