Model-checking with the
TimeLine formalism

Andrea Zaccara

Andrea.Zaccara@student.uantwerpen.be

University of Antwerp

Overview

The Timeline formalism in AToMPM
Requirements for the chat protocol software
Model transformation to FSA

Code generation of a trace checker using EGL
and Python

Abstract syntax in AToMPM

Constraint

+ label : string = constraint
x| + rule : string *

NextConstraint

Next

3| ﬁ

Event

JUrensuo)AId

Start End

ﬁ JAN R

NormalEvent

+ label : string = event
+order:int=0
+ rule : string

i

Regular Required ' Fail

A simple requirement

Regular event: After a file is opened,
Fail event: it must not be disposed
Fail event: or deleted, if it was not closed before

Required event: and it must be closed before the
end of the program.

0 1 2 3
open o dispose delete close

Mapping to FSA

 Model transformations generate an augmented
finite state automaton from Timeline specification

'open

Chat protocol requirements (1)

* Requirement 2: On receiving a connection request,
the chat room immediately makes a decision
whether to accept the client or reject it.

connReq(X,Y) -> connection request from client Y to chat room X
connReq(*,*) -> any connection request

connResp(X,Y) -> connection response from chat room X to client Y

0 1 2
start connReg(X,Y) connReq(*,*) connResp(X,Y)
O ¢ X !
de
P L connResp(*,*) l_ - inokudg

Chat protocol requirements (2)

 Requirement 7: The sender cannot receive its own
message after it sends it.

fwdMsg(X,Y,T) -> message T from client Y received by chat room X

recMsg(Y,Y,T) -> message T from client Y received by client Y

0 1
start fdesg&(,Y,T) recMsg(Y,Y,T) end
>

Model transformation to FSA (1

F
|:> :addEvState

N
Pay

__pNormalEventicon
__PNormalEventicon

:setlnitialState

:addTransitions

3.
~

F
:failBehavior |

start start
®) ®

-failState

e

:beforeRequired

‘\/ :LoopAutomatorfExcp

:LoopAutomator

:LoopAutomatorjExcp2

|| transformConst"aints

N 8

Model transformation to FSA (2)

Add transitions

.....................................

® © ©
¢

! connReq(X.Y) ! connReq(*.*) ! connResp(X.,Y)

connReq(X.Y) (S()) connReq(*,*) (Sl) connResp(X.Y) @

9

Model transformation to FSA (3)

:addEvState

N

Pay

:setlnitialState

==

:addTransitions

~

F
:failBehavior |

<

-failState

e

:beforeRequired

N/

:LoopAutomator

:transformConst

HEN

:LoopAutomatorfExcp

:LoopAutomatorjExc

failEvent

#

#
failEvent failEvent

o

requiredEvent
requiredEvent
®

10

Model transformation to FSA (4)

1

:addEvState

! connReq(X,Y)

=5

:setlnitialState

' connReq(*,*) && ! connResp(X.,Y)

connReq(X.Y)

connResp(X.,Y)

=

:addTransitions

F
:failBehavior |

\

-failState

C

F
:beforeRequired

<

)

:LoopAutomator

<

.....................................

|| :transformConst'Fints i

11

Result of the transformation (req 2)

1

0 2
St;rt connReg(X.) connReq(*,") connResp(X,Y) end
9
ude
InC® [T connResp(*,") |- -Include
\\ \\ \\ \\\
Y S
\\ N N \\
1 A Y \
\ S \
\
\\ AN °
\ N \
\ S \
\\\ \\ \\ %, !connReq(X.Y)
\ \s ™, \\
\\\! connReq(X.Y) ! c8n{1Req(*.,*) && ! connResp(*,*) s \
Y
N \
\\ connResp(XY)

Result of the transformation (req 7)

0 1
start fdesgg(,Y,T) recMsg(Y,Y,T) end
®e @ o

13

Rule definition

* The rules for matching an event use a basic
grammar for simple regular expression

—'I'" for negation

— %..%’ stores values (e.g., %X% -> save value in X)
— ?..7" checks stored value (e.g., ?X?)

— “?*?” matches any string sequence

— ‘[str1]|str2]” matches for both string strl and str2

Code generation and checking

 Done in two phases:

1. Generation of a data structure in Python for the
automaton, using the metaDepth exported model
and a script in EGL

2. Generation of a pre-processed parser using a
custom Python script

\init transition --> start

transition 25 start -| (CR 1) RR 1. |-> start

transition 27 start -] (CR 1) AC 1. |-> start

transition 37 start -| (CR 1) SM 1: Nice to meet you! '|-> SO
transition 39 S@ -| (CL 1) RM 1: Nice to meet you! |-3 S1
transition 43 S1 - |™{CR™0JT"RR"3"

[Error in state S1 for "input" (CR @) RR 3.]

>> fsm7 requirement for file with-error7 failed - row 43

Conclusions and Future works

The TimeLine meta-model in AToMPM
enables faster and easier definition of
requirements

Can already give useful information on
software validation

Regular expression support can be expanded
with more functionality

Rules definition can be made more modular
and easier to define

Questions?

