Model-checking with the
TimeLine formalism

Andrea Zaccara

Andrea.Zaccara@student.uantwerpen.be

University of Antwerp



The problem

 Model checking is an useful tool for the
verification of software requirements

* The specification definition use a cumbersome
textual notation

* The definition of temporal logic requirements
is limited to verification experts, hindering its
adoption in software development



The TimelLine formalism

Defines a sequence of events, categorized by a type:
* Regular (e), used to create a context for following events

* Required (r), this event must occur if previous events in the

time line have occurred
* Fail (X), this event must not occur if previous events in the

time line have occurred

Start




Abstract syntax

* Defined as an ordered sequence of fully connected

events

* Additional single start and end events
e Definition of constraint in-between events

Constraint

AttribufEss

- label :: String

- start :: Enum

- end :: Enum
cardinalities:

- To Ev: 0 to W

- From Ev: O to N

55\‘\\\Attribute5:
- type ::

Event

Enum
- label ::
cardinalities:

String

— From Order: 0 to
— To Order: 0 to N
— From Constraint:

- To Constraint: 0O

H

0 to

to N

v

- To Ew: 0O

|

cardinalities:

to K

— From Ev: 0

|
to N




Transformation to Automaton

* Model transformations generate a finite state
automaton from Timeline specification
* This has used for runtime monitoring and model-

checking

Matched dispose event

final: True

E. Bodden, H. Vangheluwe. Transforming timeline specifications into automata for runtime monitoring, in:
Applications of Graph Transformations with Industrial Relevance, Springer, 2008, pp. 249-264.



Project scope

e Definition of the TimelLine meta-model in
AToMP

* Model transformations to automaton and
code-generation for regular expression
recognition

* Application to the verification of
requirements for the communication
protocol of a client-server chat system



Questions?



