
Optimization and Parallelization of CBD models

Konstantinos Theodorakos

Universiteit Antwerpen

Konstantinos.Theodorakos@student.uantwerpen.be

Abstract

This document presents methods to parallelize Causal Block Diagram models
by using dependency graphs and model transformation techniques. Depend-
ing on the intention and the structure of a CBD model, output traces can
be produced for various parallel languages and frameworks. The resulting
source code is based on Domain, Task Decomposition and Pipeline parallel
patterns.

The pipeline parallel programming pattern is applied in the case of delay
dependencies between the blocks of the original CBD model. The generated
pipeline uses computational overhead calculations in order to generate almost
equally spaced stages.

Given enough simulation time steps, a speed up to 6x can be achieved,
even for relatively small CBD models. The resulting parallelized source code
uses the Intel Thread Building Blocks, OpenCL, OpenMP frameworks that
run on modern CPU, GPU and DSP compute devices. After the execution of
the output code, it is also possible to generate a custom OpenGL graph trans-
formation to visualize the input and output values into a three dimensional
cartesian system.

Keywords: CBD, Parallel, Dependency Graph, Parallelization,
Computational Overhead, Optimization, Block diagrams, Domain
Decomposition, Task Decomposition, Pipeline, GPGPU, Compute Device,
OpenCL, OpenMP, Intel Thread Building Blocks

1. Introduction

Why should we attempt to parallelize a CBD model or any piece of code?
The answer is simple but it is based deeply on a computer’s architecture. It

Preprint submitted to Elsevier January 22, 2015



is the electrical power required to drive a modern central processing unit. As
also shown in Figure 1, an system with a 2-processor architecture performs
exactly the same as a system with 1 processor, but with the 40% of the
required power.

Causal Block Diagram models (CBD) are graphs with connected opera-
tion blocks.The blocks can be algebraic expressions like the ”Adder” and the
”Product” block or provide the notion of time in the computation space like
the ”Delay”, ”Integrator” and ”Derivator” blocks do.

Figure 1: The system with 2 processors requires 40% of the energy of the one with the
single processor, but with the same performance

So what is the intention of Parallelising CBD models? There are several
reasons why we would like to parallelize Causal Block Diagram Models:

• As fast as possible simulation of large CBD models.

• Design Space Exploration (DSE). With DSE we can determine which
parameter settings of input values can get optimal results.

• Shooting Problems (i.e find(a, b, c) when output = 2.5).

• Real time simulation.

• To perform real-time ”brute force” calculations for systems that get
sensory data in high numbers of SPS (Samples per Second).

2



• Resulting source code for CBDs when using model transformations is
already optimised for fastest execution.

Parallel computing provides cooperation in a system by using shared re-
sources which can be processors/cores of each processor, the main Memory
and external compute devices like Graphic Processing Units (GPU), or Dig-
ital Sign Processors (DSP).

The rest of the paper is organised as follows:

• Section 2 provides background information about the Causal Block
Diagram models, Parallel computing/devices and architecture as well
as general information about the pipeline pattern.

• Section 3 presents the data decomposition technique for CBDs and
GPU/CPU techniques in applying this pattern.

• Section 4 describes the Task Decomposition method, its downsides and
why it wasn’t selected for CBD model transformations.

• Section 5 examines the Pipeline pattern and its stages in depth and
analyses the author’s methodology to decompose tasks and generate
equal pipeline stages on a CBD model. It also contrasts code generation
and decomposition techniques from other authors.

• Section 6 provides some details about the implementation: parallel
languages and framework used in the related work.

• Section 7 presents the experimental simulation results of CBD models
and discusses the execution times in full detail.

• Finally Section 8 concludes and mentions about the Future Work.

2. Background

2.1. Causal Block Diagrams

Causal Block Diagram models are graphs with connected operation blocks.
In our case a Time Slicing simulator is being used in order to simulate a sys-
tem of interconnected signals. The blocks can be algebraic expressions like
the ”Adder” and the ”Product” block or provide the notion of time in the
computation space like the ”Delay”, ”Integrator” and ”Derivator” blocks do.

3



2 ∗ −

+ −

+

13

2

two tx
mtx

y
x

tht

y
ttwo

z OUT

Parallel Block with Algebraic Loop

Loop

Figure 2: A CBD Model with a linear algebraic loop

The time slicing simulator, in order to successfully perform every execu-
tion iteration, requires an order in which the blocks need to be computed.
It can be determined by abstracting the block diagram into a dependency
graph.

x tx

two

mtx y

tht

ttwo

z

CBD Dependency Graph

Loop

Figure 3: The dependency graph of a CBD with an algebraic loop O(n + e)

The dependencies of signals that contain a form of time delay, don’t show
up in a dependency graph, as these blocks relate signal values at different
time instants. The Topological Sort algorithm can give an order in which
the blocks can be evaluated to provide correct simulation results.

4



2.2. Parallel Computing

”The free lunch is over” as computer engineers commonly say. This means
that it is no longer possible to maintain high level of efficiency and opti-
mization on the hardware scale. The programmers should learn to take full
advantage of the highly parallel architecture in computer’s hardware. His-
tory though has proven that achieving efficient parallelization is a complex
problem, some cases this achievement would reach ”magical” level propor-
tions if we attempt to create a generalised solution that would apply efficient
parallelism on every possible case of model transformations. However, in the
case where the construct that needs to be parallelized is well defined and
under predictable limits, then a targeted parallelization methodology would
probably be feasible. In this paper we will study how to take advantage of
the CBD formalism and attempt to acquire legit and effective parallel code
transformations from different kinds of CBD models.

Parallel computing provides cooperation in a system by using shared re-
sources. This is usually being done by threads or processes. Threads are more
lightweight than the processes because they have less overhead. Threads
manage to cooperate via:

1. Communication. Sharing information with the usage of common buffers-
memory spaces.

2. Synchronization. Having atomic and protected regions while having
common ”check points” in order to prevent race conditions. Semaphores
and Mutexes can help in preventing data corruption by providing lock-
ing mechanisms.

2.3. Parallel Computing Devices

2.3.1. GPU

A Graphics Processing unit is a device that usually has a collection of
Computational Units and distinct memory. Thus it is considered as an unique
device under an explicit context. Whenever there is a need to perform a
computation using the Graphics Processing Unit, it is required to enqueue
an execution command into the GPU’s event based queue. In OpenCL, GPUs
contain multiple levels of memory. The global/constant memory space can be
shared between all the processing units of a GPU but it has the disadvantage
of high overhead during I/O operations.

However, the GPU’s cores can be split into work groups. These work-
groups (which can be divided using 1, 2 or 3 dimensional space) contain the

5



Figure 4: The workgroup abstraction for GPU compute devices by the OpenCL framework

notion of the local memory (see Figure 4 for a 2-dimensional representation).
This memory is faster than the global/constant memory and it is shared
only between the work items of the same workgroup. Now, the fastest and
most encapsulated memory is the private memory. It is contained within
each work item/compute unit, it is not visible by other compute units and
it helps in executing complex calculations by acting as a temporary and fast
memory placeholder for local computations. The main advantage of the ex-
ternal compute devices is that, by default they are optimized to execute in
massive and parallel task and data computations, based on double precision
floating point scalar variables, vectors, raw buffers and image objects.

2.3.2. Multi-core Processors

In a shared memory computer typical applications are being run within
the context of one process. Each process contains one main thread and several
additional threads. These threads perform read/write operations into the
shared address space of the process or the main Memory(Figure 5). In order
to avoid corrupted results when multiple threads perform R/W operations
over the same address space, syncing and some sort atomic operation regions
are required. We must be careful though, when have to apply synchronization
techniques . If syncing threads is overlooked and overused, it may introduce
unnecessary slowdowns and overhead that would even cause the execution

6



time to grow exponentially.

Figure 5: The shared memory model. Threads can have private and shared memory space

2.3.3. Pipeline

A Pipeline pattern connects tasks in a producer-consumer relationship.
Conceptually all stages of the pipeline are active at once, each stage can
maintain a state that can be updated as data flows through them. A linear
pipeline is the basic pattern but more generally, a set of stages could be
assembled in a directed acyclic graph. It is also possible to have parallel
stages.

The stages of the pipeline can be generated by using functional decom-
position on all the required tasks of an application. Though this approach
leads to a fixed number, of stages so pipelines are generally not arbritarily
scalable.

A pipeline is a linear sequence of stages. Data flows through the pipeline,
from the first stage to the last stage (usually is called a filter). Each stage
performs operations on the data. The data are partitioned into pieces called
items. A serial stage can process one item at a time, though different stages
can run in parallel.

Pipelines are appealing because:

• Early items can flow all the way through the pipeline before later items
are even available.

• Pipeline composition is straightforward. The output of a pipeline can
be fed into the input of a subsequent pipeline.

7



• A serial pipeline stage maps a serial I/O device.

• Pipelines deal naturally with resource limits. The number of items in
flight can be throttled to match those limits (using tokens as also used in
the related work). It is possible for a pipeline to process large amounts
of data, using a fixed amount of memory and threads/processes.

• Linear structure makes it easy to reason about deadlock freedom, unlike
topologies involving cycle or merges.

• Each stage can be debugged separately.

A pipeline with only serial stages has a fundamental speedup limit, similar
to Amdahl’s law in throughput. The throughput of the pipeline is limited
to the throughput of the slowest serial stage because every item must
pass through that slow stage one at a time. In asymptotic terms, pipelines
provide an asymptotic speedup. Though there is a hidden constant factor
that can make a pipeline worth the effort. A pipeline with four perfectly
balanced stages can achieve a speedup of 4. However this speedup will not
grow further with more processors: it is limited by the number of serial
stages, as well as the balance between them.

Parallel stages make a pipeline more scaleable (Figure 6). A parallel stage
processes more than one item at a time. A parallel stage is different from a
serial stage with internal parallelism, because the parallel stage can process
multiple input items at once and can deliver output items out of order.

Parallel pipelines introduce a complication to the serial stages. In a
pipeline with only serial stages, each stage receive items in the same or-
der. But when a parallel stage intervenes between two serial stages, the later
serial stage can receive items in a different order from the earlier stage. Some
applications require consistency in the order of the items flowing through the
serial stages and usually the requirement is that the final output order must
be consistent with the initial input order. Data compression is an example.

3. Data Decomposition for CBDs

A GPU compute device can be enqueued with two types of jobs: in-order
and out-of-order. In the out-of-order case we can have faster execution times
but the computations are being performed throughout all their range by the
compute units freely, without a specific sequence in execution.

8



Figure 6: A pipeline that contains both serial and parallel stages

One of the limitations that the compute devices like GPUs may face on
hybrid computing is that there is a certain upper limit on the max size of
the buffer memory chunk of data that can be transferred from the main
system to the GPU. As also found in practice, in the case of the 15 CBD
blocks, the GPU could load at maximum enough data for around 25 million
iterations whereas in the case of a CBD block model with 5 blocks it can
reach up to 52 million iterations.

After that point though, ”memory out of range exceptions” occur. This
is probably due to a hardware limitation. But how this issue can it be
resolved? The solution would be to use the iterator pattern(Figure 7).
The Data Decomposition part should remain the same but whenever there is
a need to enqueue more data than the hardware memory buffer can handle in
one transfer, data could be divided into a series of manageable sized chunks.
In this case, after the first chunk of data has been transferred to the GPU
and returned with the processed data, the GPU can be enqueued with the
next chunk of data until it finally computes all the divided chunks.

9



Figure 7: The iterator pattern can help in processing large amounts of date by splitting
the parallelization into manageable data chunks

A technique, commonly used to compose and split tasks using the Data
composition is the ”Parallel For” (Figure 8). This construct achieves - in
some cases automatically - equal decomposition of the operations required
not on a GPU or other discrete compute device, but on a typical computer
system with the ”Shared Memory Model”. This way, using threads, a CPU
can be utilized to almost its full extend and achieve increased performance
at higher levels than compared to a GPU device, especially when the com-
putational delay of each task is relatively light and a lot of communication
between threads/tasks is required. In the related work, the ”parallel for”
pattern was utilised using the OpenMP library.

Figure 8: Data Decomposition with the ”ParallelFor” construct

One of the techiques used in splitting and assigning tasks to different
threads/processes is the Round Robin algorithm. This allows each thread

10



to execute in ordered turns, like dealing cards on a card game. Usually
round robin is faster than splitting the job size of each thread into predefined
chunks of iterations. This task splitting technique was used in the case of
the parallel For pattern, in order to distribute tasks/iterations to each one
of the requested threads. However, as also found in practice, the Domain
Decomposition technique results in faster compute times compared to the
Round Robin algorithm (around 1-5%).

4. Task Decomposition for CBDs

Task based decomposition is a very common and effective tactic in apply-
ing concurrency. But in the case of the execution of a CBD model simulation,
task based decomposition is not optimal. The resulting task scheduling set
often contains irregularities in its final form, which means that it is harder
to detect concurrent patterns and to fully ”parallelize” the execution. There
are still ”utilization gaps” as shown in Figure 9. However if the decomposed
tasks are divided equally enough, considering the computational delay of per-
forming all the operations of each task computational delay, we can apply
the pipeline parallel pattern to try to achieve a better level of parallelization.

5. Pipeline Decomposition for CBDs

In the paper [4], a recursive branch-and-bound algorithm is being used
to compute effective schedules. As it is mentioned, the core of the algorithm
tries to decompose a dependency graph into strongly connected components
and then attempts to find the optimal schedule by further decomposing each
strongly connected component. While this algorithm is very effective on
single-core systems, by its nature of being a recursive algorithm, this
means that in an extended enough model, the available solution state space
will grow exponentially. In contrast, having to simulate extended CBD
models with many millions of time steps is where parallel approaches truly
shine.

In the paper[5], it is mentioned that flattening a block diagram impacts
performance since all the methods that perform operations on the entire
flat diagram, can be very large. While this is true on serial execution, in
a parallel execution environment, this is a desirable side effect. Having a
flattened level of a series of commands allows creating efficient pipeline
stages to be easier. Also not having multiple sub levels of function calling

11



Figure 9: Even though the task decomposition technique increases the overall utilisation,
it isn’t 100% efficient due to irregular patterns and ”gaps” between the execution of the
tasks.

commands allows for better alignment with a Pipeline and a Data decom-
position technique, because by nature, these techniques lead to flattened
constructs which also favour the hardware (especially in the case of Share
Memory programming, were we want to use the local thread/processor cache
as much as possible). Threads preferably should perform operations on their
local/private memory space and they are favoured even further if they don’t
have to deal with many levels of deep function calls.

Finer granularity on individual tasks provides more options when at-
tempting to group many tasks, especially in the case of serial pipeline stages.
For similar reasons, generating modular code isn’t optimal for a parallel ex-
ecution scheme. Flattening of course destroys modularity and may cause IP
issues but in cases where such concerns don’t exist, having modular code

12



would hinter performance of a parallel execution even to a point were
it can’t be optimised after a certain threshold. Modularity is also examined
by the paper [6] with the MRCT task schedule generation algorithm. With
the TRCM algorithm, the resulting task set pays greater respect on the tim-
ing metric compared to MRCT where it is primarily based on modularity. As
shown in TABLE I. of the same paper, the TRCM execution has lower latency
versus the MRCT, which is another indication that modularity introduces a
decline in the performance compared to the flattening methodology.

Now, in our case we will use a much simpler solution. We will extend
the normal task schedule generation that a CBD inherently has. So, we just
want to apply the Depth First Traversal algorithm (Figure 10) on the original
CBD model, in order to get the Dependency Graph. After that we will apply
the topological sort algorithm to get a valid sort order by also achieving the
minimum calculation order (order O(n+e)).

Figure 10: The order that the Depth First Traversal algorithm follows

We will use a relatively naive technique to compare 4 possible distribu-
tions and pick the most equally spaced one (Figure 12). On the first 2, we
start from the first element of our set. Lets say we need 4 pipeline stages.
We consider the first element to belong to the first pipeline stage. After that,
we will add the next computational value to the total sum of the group and
also the next task into the first group. We will keep doing that until the
sum of the group just exceeds the average computational weight of the whole
pipeline. The next element will be put into the second group and the sum of
the 2nd stage will start as zero of course. We will keep doing that until we
reach the end of the task scheduling set. This is the first distribution. For
the second distribution we follow exactly the same procedure as the first but
with one difference.

13



After we add the task that makes the current set to exceed the average
weight of a stage, then, we remove that last task from the stage and we
add it to a newly created stage. Thus, in the 2nd case, the sum of all the
computational weight values for the 1st pipeline stage should be less than
the ”ideal stage size” and of course in the 1st case, the computational delay
sum of the 1st pipeline stage elements will be greater than the ”ideal stage
size”. For the third and fourth case we perform similar actions as the first
and second way of dividing the tasks but with one difference. We start from
the bottom of the task set and we move to top, not from the top/first to
the bottom. The ideal stage size in order to create stages with exactly equal
computational delay is calculated by:

IdealStageSize =

∑taskCount
j=1 computationalCostj

numStages
, (1)

0 < numStages ≤ taskCount, numStages ∈ N

Figure 11: Sample computational Weight for CBD blocks

Finally we end up with 4 set of pipeline stage groupings. All is left now
is to use a similar to standard deviation technique in order to detect which
one of the 4 cases has a distribution closer to the ideal average stage size.
We can do that by adding all the: (sum of all the stage elements - average
stage sum size) power of 2. We will end up with 4 numbers, one for each
case. The distribution that has the smaller sum value means that it has the
least deviation from the mean value. This means that it is the closest one
to the ideal pipeline stage set. So essentially, to select the optimal case, we
need the:

14



min

numStages∑
i=1

(StageSizei − IdealStageSize)2 (2)

Figure 12: The procedure to generate a ”close to optimal” pipeline stage task distribution
for the given CBD model

6. Impementation

Whenever a linear algebraic loop is detected with the usage of a reverse
dependency graph, a Gaussian Elimination solver is being used. It manages
to ”lift up” the blocks that are related in the loop and are being regarded as
one ”singleton” block.

15



x tx

two

mtx y

tht

ttwo

z

0

5 6 3

2 7

14

CBD Reverse Dependency Graph

Strong Components

Figure 13: The Reverse Dependency graph of a CBD with an algebraic loop

As part of the CBD model transformations, Ansi C output code is being
generated automatically and uses the GLUT/OpenGL framework to display
a 3-dimensional preview of the input and output signal values (Figure 14).
It is possible to rotate, scale in-out, hide-show the grid of the 3d cartesian
visualisation. The following frameworks were used for the code generation:

• OpenMP: OpenMP Application Program Interface (API) is a portable,
scalable model that gives shared memory-parallel developers a simple
and flexible interface for developing parallel applications for platforms
ranging from the desktop to supercomputers. OpenMP supports multi-
platform shared-memory parallel programming in C/C++ on Mac OS
X, Windows and Unix based operating systems. OpenMP uses pre-
compiler directives and the notion of ”structured blocks” in order to
distinquish private pieces of ”code” from the main thread’s code. Struc-
tured blocks use one or more statements to declare an entry/starting
point as well as en exit point.

• OpenCL: OpenCL (Open Computing Language) is a multi-vendor
open standard for parallel programming of heterogeneous systems that
include CPUs, GPUs and other processors. OpenCL provides a uniform
programming model by abstracting hardware details and thus providing

16



to the software developers portable code that can run from handheld
devices up to high-performance compute servers.

• Intel TBB: (Intel Thread Building Blocks) is an Open Source library
created by Intel Corporation. It supports a wide range of platforms,
operating system and even non-Intel based CPU hardware. Specifically
for the Parallel Pipeline pattern it deals with 3 types of stages:

1. parallel: process incoming items in parallel

2. serial out-of-order: process items one at a time, in arbitrary
order

3. serial in-order: process items one at a time, in the same order
as the serial in-order stages in the pipeline.

Figure 14: The generated 3D graph output using the OpenGL framework to draw the
input and output signals

17



The good news is that the two kinds of serial stages have no impact
on asymptotic speed up. The throughput of the pipeline again is
limited by the throughput of the slowest stage. The advantage
of the serial-out-of-order is that by relaxing the order of items, it can
improve locality and reduce latency in some scenarios by allowing an
item to flow that would otherwise have to wait for its predecessor.

Figure 15: The Complete parallelization workflow

7. Experiments

7.1. Experimental Setup

The test machine that was used for the experiments, was a Mac Book Pro
Mid 2012 (Processor: 2.6 GHz Intel Core i7, Memory 8GB DDR3, IGP: Intel
HD Graphics 4000 1024MB, External GPU: Nvidia GTX 650M 1024MB).

18



We examine 2 test cases, with relatively small CBDs, both not having any
delay type of block. The first had 6 blocks and a Linear Algebraic Loop
(Figure 7.2) and the second 16 blocks (Figure 7.2) and no algebraic loops.
The results show that given enough complexity and multiple iterations, a
parallel universe of a CBD can outperform a serial based.

7.2. Results

105 106 107

0

2

4

6

8

10

Number of Iterations

E
x
ec

u
ti

on
T

im
e

(s
ec

s)

CBD Model with an Algebraic Loop (5 blocks)

Serial(CPU)
ParallelFor(CPU)

Data Decomposition(IGP GPU)

Figure 16: Simulation execution times for CBD Model with 5 Blocks and 1 Algebraic
Loop. Machine used: Mac Book Pro Mid 2012 (Processor: 2.6 GHz Intel Core i7, Memory
8GB DDR3, IGP: Intel HD Graphics 4000 1024MB, External GPU: Nvidia GTX 650M
1024MB)

One interesting conclusion from the experiment results regarding the 2
different GPUs that a Mac Book pro has, is that, in most of the cases,
the integrated GPU was faster at the execution than the discrete GPU (the

19



105 106 107

0

0.5

1

1.5

2

2.5

3

Number of Iterations

E
x
ec

u
ti

on
T

im
e

(s
ec

s)

CBD Model with no Algebraic Loops (15 blocks)

Serial(CPU)
ParallelFor(CPU)

Data Decomposition(IGP GPU)
Data Decomposition(Discrete GPU)

Figure 17: Simulation tims for CBD Model with 15 Blocks and no Algebraic Loops.
Machine used: Mac Book Pro Mid 2012 (Processor: 2.6 GHz Intel Core i7, Memory
8GB DDR3, IGP: Intel HD Graphics 4000 1024MB, External GPU: Nvidia GTX 650M
1024MB)

discrete is specialized in 3D graphics processing). This is due to the fact that
on a Graphics processing unit, the most ”expensive” operation in terms of
latency is the transportation procedure of all the initial raw data from the
main memory to the GPU memory.

The internal GPU is faster on this operation because, in terms of hardware
architecture, it is an integrated circuit on the mother board (or inside the

20



CPU itself in some cases) and by default, it is faster in I/O communication
with the CPU than with the external GPU. Even though it doesn’t use high
quality fast Ram chips as discrete GPU devices do,the integrated GPUs use
the same memory space as the main system (essentially the main RAM). So
the operations to move data in and out of the memory buffer between the
main system and a GPU is actually a virtual operation since both constructs
use the shame memory address space.

In the CBD Model that doesn’t contain any Algebraic Loops (Figure 7.2)
but has 16 computational blocks, we can see a small but steady increase in
performance, both in ParallelFor for CPU and in Data Decomposition for
GPUs. When the iterations get close to 108 we can see almost a 1.5 times
speed up for both parallel techniques. In this model also the Internal GPU is
almost as fast as the external/discrete GPU. It seems that even though the
IGP is slower in execution, the fact that there is no need to transfer input
data from the host (the computer) to the compute device (for the Discrete
GPU only) since it uses the same memory space, we result in almost identical
performance.

Now in the case of the CBD Model with an Algebraic Loop (Figure
7.2)and 6 blocks, we can see that we have almost no gain in speed when
the iterations are below 1 million. After that point though, we can clearly
see that the performance gains resemble the mathematical formula f(x) = x2.
Especially in the case of Data Decomposition on the GPU, the execution time
for nearly 108 iterations is almost 8x fold faster. The problem though is that
after 109 iterations, the GPU must obtain divided memory chunks of data be-
cause it throws and out of memory exception. In the case of Parallel For with
OpenMP (and a CPU with 4 cores), we can still see a good performance gain
(for 109 iterations we get almost 2.5x speed up), not as good as in the case
of the GPU, but we have the advantage of avoiding two type of overheads.
One is splitting the input data into manageable chunks and the second is
moving the data from the main memory to the compute device memory (we
don’t need those because Parallel For uses the same memory space in RAM
for all the threads). The CBD Model tested was a relatively small (6 blocks)
and still it is clearly visible that we can get very good performance gains,
provided that our simulation has enough iterations.

21



8. Conclusions and Future work

The conclusion is that, it is indeed feasible to perform parallelization
transformations of Causal Block diagrams that transform into multiple dif-
ferent frameworks and take advantage of the underlying hardware (see Figure
15 for the whole suggested parallelisation workflow). Data and domain de-
composition was found that it provides speed up from 1x (so it doesn’t delay
the serial execution) up to 6x depending on the scale of the CBD Model and
the number of iterations of the simulation. This make this appliance ideal
in case of Shooting Problems and Design Space Exploration. One im-
portant fact is that, even though a deep knowledge of hardware architecture
and parallelization patterns is required for parallel model transformations,
the need to optimise the output parallel code at low level is required only
once. These improvements can be reapplied automatically on all of the future
output traces of the input CBD models.

For future work, a processor performance model of a cpu architecture
will be also the input (together with the CBD Model) in the Parallelization
workflow. This way, using parallelized simulations, the overhead of mapping
CBDs to source code can be calculated. The choice of the technique (Data
Decomposition, Parallel For and Parallel Pipeline) will depend on the inten-
tion, the type of the model as well as its limitations. I.e in the case of CBD
models without Algebraic loops, we can use all these 3 techniques. But in
Continuous Time CBDs, where Delay/Integrator and Derivator Blocks are
being used, the only option is a Parallel Pipeline.

9. References

[1] OpenCL API 1.2 Reference Card, page 1

[2] OpenMP API 3.1 Reference Card, page 1

[3] Structured Parallel Programming - Pipeline, page 99, 253

[4] The semantics and execution of a synchronous block-diagram language,
page 35

[5] Modularity vs Reusability: Code Generation from Synchronous Block
Diagrams, page 1504

22



[6] Task Synthesis for Latency-sensitive Synchronous Block Diagram, page
10

[7] Heterogenous Computing with OpenCL, page 10

[8] OpenCl Programming guide for Mac, page 130-135

23


