
Visual Modelling Environment for CBD’s

Final project for Model Driven Engineering, 2014-2015

Michaël Deckers



2/28

Introduction & contents

▶ Implementation (part 2 of project)
▶ Designing CBD formalism for AToMPM
▶ Export model to MetaDepth and compile to python
▶ Generate simulation back-end

▶ Future work
▶ Conclusion
▶ Demonstration



3/28

Designing the CBD formalism

▶ Abstract syntax
▶ Class for each block type
▶ Blocks inherit from BaseBlock (class) to be easily interconnectible
▶ CBD (class) can contains Blocks and other child CBD’s
▶ Extra classes for:

▶ Total simulation steps
▶ Current simulation step

▶ Connections: choose type of input on connect



4/28

Designing the CBD formalism

▶ Abstract syntax



5/28

Designing the CBD formalism

▶ Concrete syntax
▶ Each block has its own design

▶ Shows input and output ports
▶ Shows the operation it performs clearly
▶ Color coded for type (e.g. green: mathematical, yellow: boolean)
▶ Exceptions: purple circle: InputPortBlock, yellow circle: OutputPortBlock

▶ Each type of connection has a certain color
▶ Black: normal input
▶ Blue: IC (initial component) or special input (divider or nth root)
▶ Red: delta_t connection for derivator and integrator blocks



6/28

Designing the CBD formalism

▶ Concrete syntax



7/28

Designing the CBD formalism

▶ Concrete syntax



8/28

Designing the CBD formalism

▶ Concrete syntax



9/28

Exporting to Python

▶ MetaDepth
▶ Design or load model and metamodel
▶ Manual compilation

▶ Using the MetaDepth toolbar
▶ On systems other than Windows

▶ Automatic compilation
▶ Using the CBD simulation toolbar (introduced later)
▶ On Windows systems



10/28

Exporting to Python

▶ EGL
▶ Export the MetaDepth models to be compatible with the Python generator

(MoSIS)
▶ Long process, the main parts are:

▶ Adding child CBD’s
▶ Adding blocks and connections to child CBD’s
▶ Adding blocks and connections to main CBD
▶ Retrieving results from the simulator and grouping them



11/28

Simulation

▶ Simulation toolbar

▶ Export model to MetaDepth
▶ Export metamodel to MetaDepth
▶ Compile MetaDepth to Python
▶ Run full (complete) simulation
▶ Pause simulation
▶ Perform one simulation step
▶ Reset the simulation



12/28

Simulation

▶ Simulation was developed in multiple iterations
1. Running the simulation
2. Updating the AToMPM model
3. Using Statecharts for simulation
4. De/reconstruction of the simulator to/from Statechart
5. Eliminating full simulation
6. Reset
7. Pausing the simulation



13/28

Simulation - Running the simulation

▶ Connection layer converted from ParallelDevs model
▶ Do simulation call (to existing python CBD simulator) from this connection

layer
▶ Main challenges:

▶ Finding out which parts are necessary
▶ Adapting this back-end to work with (much simpler) CBD models



14/28

Simulation - Running the simulation



15/28

Simulation - Updating the AToMPM model

▶ Results from simulation have been received in connection layer in the form
of a list of tuples

▶ (blockname, blockvalue)

▶ For each tuple, update the value of the block in AToMPM with the correct
value

▶ Main challenge:
▶ Figuring out how and where to make the right calls



16/28

Simulation - Updating the AToMPM model



17/28

Simulation - Using Statecharts for simulation

▶ Previously: call the simulation from the connection layer
▶ Now: the simulation is called by a Statechart transition, which interacts

with the python simulator
▶ Statechart currently has 2 states and 1 transition

▶ Idle (simulator is doing nothing)
▶ Finished (simulator is done)

▶ Main challenge:
▶ Figuring out how to use the Statecharts as an extra layer



18/28

Simulation - Using Statecharts for simulation



19/28

Simulation - de/reconstruction of the simulator
to/from Statechart

▶ Previously: the Statechart would make a call that runs the entire simulation
and only returns the end result

▶ Now: it is possible to step through the simulation
▶ Statechart currently has 3 states

▶ Idle (simulator is doing nothing)
▶ Finished (simulator is done)
▶ Working (individual steps are being simulated)

▶ Modify the (existing) Python CBD simulator and the EGL exporter
▶ Main challenge:

▶ Modifying all required files



20/28

Simulation - de/reconstruction of the simulator
to/from Statechart



21/28

Simulation - eliminating full simulation

▶ Previously: when running full simulation, the result of the entire simulation
would be requested from the Python simulator

▶ Now: full simulation is modelled by repeating single steps
▶ Main challenge:

▶ Figuring out how to distinguish between a single step or repeated,
automatic steps



22/28

Simulation - eliminating full simulation



23/28

Simulation - reset

▶ Previously: when the simulation was done, a reload was required
▶ Now: the simulation can be reset and restarted
▶ Reset all the values of blocks in AToMPM to their initial values (0)



24/28

Simulation - reset



25/28

Simulation - pausing the simulation

▶ Previously: once the automatic simulation was started , it cannot be
stopped

▶ Now: the simulation can be paused and resumed
▶ Main challenge:

▶ The Statechart engine was not adapted to do what I needed
▶ Trying to find some solution for this problem



26/28

Simulation - pausing the simulation



27/28

Future work

▶ AToMPM syntax
▶ Constraints

▶ Enforce the user to generate correct models
▶ Visual improvements

▶ Input/OutputPortBLocks should snap to their CBD
▶ Improve visual appearance

▶ Simulation
▶ Following simulation/debugging options can be added

▶ Small steps (one block at a time)
▶ Backwards stepping (Big and small steps)
▶ Breakpoints, these were introduced in the reading assignment but not

implemented



28/28

Conclusion

▶ MoSIS course missed a visual environment for an important part of the
course: CBD’s

▶ A lot of subjects/assignments from the MDE course were used in this
project

▶ Creating the simulator was very frustrating
▶ Starting from an existing project and modifying it
▶ Choosing between the perfect solution and time limitations

▶ Decent functionality and usability for the time I was able to invest


	My section
	My subsection


