
Causal Block Diagrams: Compiler to LaTeX and DEVS

Nicolas Demarbaix
University of Antwerp

Antwerp, Belgium
nicolas.demarbaix@student.uantwerpen.be

Abstract

In this report I present the results of my project for the course Model Driven Engineering. This project consists of
developing a Causal Block Diagram (CBD) to LaTeX and DEVS compiler. Using this compiler one can generate text
based documents (in LaTeX) that give a detailed description of the CBD model on one hand. On the other hand, one
can transform the CBD model into an equivalent DEVS model. This will allow us to use, for example, the PypDevs
simulation framework for DEVS to simulate the Causal Block Diagram in a different environment and compare the
results. Also it allows us to use the generated CBD AtomicDEVS as a component in another DEVS model. This way it
is for example relatively easy to link different CBD’s together in an arbitrary order.

Keywords: Model Driven Engineering, Causal Block Diagrams, Compiler, LaTeX, DEVS

1. Introduction

During the course Model Driven Engineering many
different aspects of Modelling were discussed. Topics such
as Meta-Modelling, Concrete Visual Syntax, Semantics
and Transformations were brought to attention. In Mod-
elling of Software-Intensive Systems, a course coherent to
Model Driven Engineering, different Modelling Formalism
were presented. Using both the theoretical and practical
aspects of both courses, a Causal Block Diagram (CBD)
to LaTeX and DEVS compiler will be developed in
the light of a final project for the course Model Driven
Engineering.

Both aspects of this compiler were originally planned to
be developed using the AtomPM modelling tool. However
due to issues with attempting to transform a CBD model
in AToMPM to both a LaTeX and DEVS model, I
decided to leave this path and implemented the compiler
using Python1.

1.1. Motivation

The reason(s) for developing a CBD to LaTeX/DEVS
compiler are the following. To start let us take a look
at the CBD to LaTeX part of this compiler. CBD
models are a good way to model for example a process

1Issues included for example AToMPM crashes when exporting
a transformed dependency graph to metaDepth and not being able
to add a method to the DEVS output file for calculating the alge-
braic loops. I will include my work in AToMPM with this project.
It includes constructing a CBD model, transforming this model to a
Dependency Graph model and applying the dependency graph algo-
rithms to constructu the strong components.

or a set of equations. It is however not always easy to
understand the model by simply looking at it. A textual
description of such a CBD model could overcome this
burden. By providing a CBD to LaTeX compiler, one
could easily retrieve information about the CBD such
as block definitions, interconnectivity of blocks, possible
algebraic loops in the model, etcetera.

One of the reasons why one might want to trans-
form a CBD model into a DEVS model is the ease of
using events in DEVS. Say for example that you want
to study the effect of a certain input value to an entire
component of the CBD. This can easily be achieved in the
DEVS formalism by using external transitions and event
generation. Another advantage of transforming CBD into
DEVS is that one could verify the model by exporting the
DEVS model to PypDevs.

1.2. Concept

The general concept of the CBD compiler is the follow-
ing. The ’to LaTeX ’ aspect of the Compiler is to provide a
textual representation of the CBD model. In this textual
representation details such as block structure, connections
between blocks and functions/values of the blocks can be
included. Moreover, by using an intermediate language2,
the algebraic loops that could occur in a CBD model
might already be solved and a description of these loops
could also be added to the textual representation.

2More information about the concept of this intermediate lan-
guage can be found in Sections 2 and 3.

Preprint submitted to Model Driven Engineering January 21, 2015

On the other hand we have the ’to DEVS ’ aspect of
the compiler. This aspect provides the means to construct
a DEVS model that is directly related to the CBD model.
The resulting DEVS model will consist of all different
elements of the DEVS formalism3. Using these elements
the main concept of this aspect will be to create an
Atomic DEVS element that contains a state for each
strong component. Inside such a state, the possible cyclic
dependencies in such a component can be resolved to
find a solution for the algebraic loop (see later). The
general idea in this concept is that the AtomicDEVS
that represents the Causal Block diagram can act as a
single component, which can be used by itself or inside a
network of AtomicDEVS Components.

1.3. Structure

The structure of this reports is as follows. In Section 2,
a theoretical basis for this project is provided. In Section 3
I will discuss my design intentions for the compiler itself.
Next, in Section 4 I will discuss the actual implementation
of both the CBD to LaTeX as the CBD to DEVS compiler.
In Section 5 I will discuss some general results about the
implementation. Lastly, in Section 6 I conclude on the
project and will present some possible Future Work.

2. Theoretical Background

In this section I will give a brief overview of the theo-
retical background on which this project is based. I will
assume a decent knowledge about these topics such that
I do not need to go in too much detail, which would be
outside the scope of this report. I will start by presenting
the constructs that will be used to build an intermediate
language (see Section 3). Next I will present the mapping
between the CBD model and the DEVS model without go-
ing into details about design intentions. Next I will discuss
the issue of algebraic loops and how they will be solved.
Lastly I will take a quick look at an algorithm for dynam-
ically changing the rate of a block inside a CBD model.

2.1. Intermediate Language Constructs

The intermediate language that will be used when
transforming CBD models to either DEVS or LaTeX will
consist of the dependency graph of the Causal Block Dia-
gram along with certain dictionaries (see Section 4) that
will store certain aspects of the CBD. This means that
we need to provide the proper algorithms to transform
the source CBD model into such a dependency graph.
Of course, the methods to construct the dependency
graph are already provided in the CBD implementation4.

3The elements of the formalism that are refered to are Atomic
DEVS, Coupled DEVS, Events, Internal Transitions, External Tran-
sitions and State Definitions

4The implementation for these methods was constructed during
the course Modeling of Software Intensive Systems

Why this structure is used as intermediate language is
discussed in Section 3.

The algorithms that are used to construct the de-
pendency graph can be found in Appendix A. These
algorithms come directly from the course page for Mod-
elling of Software-Intensive Systems5. As stated, the
actual implementation of these algorithms originates from
a project for the course Modelling of Software-Intesive
Systems. We can use the dependency graph that is
constructed using these algorithms to determine the
order in which blocks should be computed, and more
importantly, to discover whether the causal block diagram
contains loops that can be solved.

It is important to note that the exact ordering of the
nodes will be random as the ”root” node for the algorithm
is choosen at random. This is of course the case since we
are working with cyclic graphs which contain no single
root node. However this random ordering will only occur
in the Topological Sort algorithm as the algorithm for
finding the strong components of the dependency graph
should always return the same set of strong components.

Using the above algorithms, a depency graph is built
from the CBD. Using both the CBD model itself as
the dependency graph, we will construct the following
dictionaries, which are also part of this intermediate
language:

1. A ”depends on” dictionary containing per block all
the blocks it depends on

2. A ”influences” dictionary containing per block all the
blocks it influences

3. A ”component” dictionary containing per strong com-
ponent in the dependency graph all blocks that belong
to this component

4. A ”types” dictionary containing per block its block
type

Why we need such dictionaries and where we will use
them will become clear in the next sections.

2.2. CBD to DEVS mapping

As defined by Zeigler et al. (2000), an Atomic DEVS
model M can be written as M =< X,S, Y, δint, δext, λ, ta >
where

1. X Input Set

2. S State Set

3. Y Output Set

4. δint : S → S Internal Transition

5. δext : QxX → S External Transition

6. Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}
total state, e is elapsed time

5http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/CBD/topsort.pdf
http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/CBD/strongcomp.pdf

2

7. ta : S → R+
0,inf time advance function

8. λ : S → Y output function

Using this definition of Atomic DEVS we will now take
a look at how the CBD model will be mapped onto such a
DEVS. Note that each strong component will be mapped
onto a single state. Each state of the Atomic DEVS will
thus either contain:

• A single element. In this case the component in the
dependency graph of the Causal Block Diagram was
not cyclic and contained only a single block

• A number of elements. In this case the component
was cyclic.

Actually stating that the state in the Atomic DEVS ”con-
tains” a single or a number of elements is not entirely cor-
rect. Each state will contain all the values of the blocks in
the CBD. In each state, the values of the blocks belonging
to the component to which the state corresponds will be
computed and updated (more on this topic in Section 4.
For each Atomic DEVS that is generated by the transfor-
mation we see that X = Y = {SignalV alues} where Sig-
nalValues is a dictionary that is returned by the internal
transition going from this state to the next. SignalValues
will contain the updated values for the blocks that were
computed in this state.
The state space S of the Atomic Devs will consist of all
the states that are generated for the different components
in the dependency graph. But not for each component a
state will be generated. For those components where we
can determine the block values at setup time (by propagat-
ing the block values along the CBD, for as far as possible),
there will be no state in the Atomic DEVS.
The internal transitions of the Atomic DEVS will cor-
responds to links between the strong components in the
dependency graph of the Causal Block Diagram. More
specifically, the strong components will have a certain or-
dering in the dependency graph (based on the dependen-
cies of the blocks belonging to these components). Each
link between two states will consist of an internal transi-
tion between from the state of componenti to the state of
componenti+1.
There will be no explicit external transitions present in
the Atomic DEVS model. In case the AtomicDEVS model
serves as a component in a network of AtomicDEVS mod-
els, external transitions and the corresponding ports will
need to be added, but this can be performed quite easy by
extending the method ”extTransition” in the class CBD.
The total state of the Atomic DEVS will consist of the
output signal of each block represented by a value in the
Atomic DEVS State, CBDState, at a certain point in time.
This output signal will of course be based on the input sig-
nals at the same given point in time.
The time advance function for each state will be based on
the rate of the corresponding block. The rate corresponds
(for example) to the number of steps that are taken each

second by the block. The time advance function might
change over time if the rate of the corresponding blocks
changes dynamically (see Section 2.4).
Lastly, the output function λ does not produce any output
for this Atomic DEVS. If output is needed when connect-
ing the Atomic DEVS to other Atomic DEVS, the method
”outputFunc” in the class CBD can be adapted to return
a certain output set.

2.3. Algebraic Loops

Algebraic loops correspond to cycles in the dependency
graph of the CBD model. In terms of CBD models an
algebraic loop occurs when the output of a certain block
is connected to its own input, either directly or indirectly.
The problem with these algebraic loops is that the output
result of the corresponding block(s) cannot be computed
explicitly. Or interpreted differently, their output signals
cannot be determined based on the initial state of the
model.

There are many ways to solve such an algebraic loop.
To minimize the complexity that corresponds with these
loops, we will first try and determine whether the alge-
braic loop is linear. If so it can be solved using techniques
such as Guassian Elimination. If it is non-linear, more
advanced techniques are required.

To determine the linearity of the algebraic loop, we
base ourselves on the definition of linearity and the
structure of the blocks and the CBD model. From the
Encyclopedia of Math (2011) we include the following
definition for linear equations. Given a set of N variables
{xi|i ∈ {0, . . . , N − 1}} and a set of known values
{ai, b} where i = 0, . . . , N − 1 an equation of the form
a0x0 + a1x1 + a2x2 + · · ·+ aN−1xN−1 = b is always linear.
Otherwise interpreted we see that an equation is thus
linear if all variables in the equation are of first degree.
Also the multiplication of two or more unknowns (e.g.
z = xy) results in an equation being nonlinear.

Based on this definition, I will now present a list of
block combinations in a CBD model that can be classified
as nonlinear. In case these combinations occur, an error
message will be produced and any ongoing procedures will
end. In all other cases however, we classify the equations
as linear and the procedure can continue. The following
combinations of blocks in a CBD model yield non-linear
equations:

• The precense of a RootBlock always results in an
equation being non-linear, as it computes

√
x = x1/2.

We see that the unknown x is not of first degree in
this case, so these equantions will be non-linear.

• The abscence of at least one ConstantBlock as input
for a ProductBlock. In case none of the inputs of the
ProductBlock are of type ConstantBlock, then we see

3

Figure 1: Example of a basic algebraic loop in CBD.

that the output signal ’z’ of the ProductBlock is calcu-
lated as z = x∗y. We thus see that this ProductBlock
yields a non linear equation.

• An exception to this last rule is that instead of a Con-
stantBlock, the presence of an Integrator- or Deriva-
torBlock will also result in a linear equation. This can
be explained by the fact that these blocks have an Ini-
tial Condition which is valid at the initial state of the
model. This Initial Condition must be defined at time
zero, therefor the output signal of these blocks will
also be known in the initial state. This also counts
for a DelayBlock, as its initial condition should be
known at the initial state of the model. Furthermore,
if at least one of the inputs is a WireBlock, InputPort-
Block or OutputPortBlock the resulting equation will
also be linear, as these blocks simply pass values from
one block to another.

Now let us propose a way of dealing with these algebraic
loops in case they are in fact linear6. A linear algebraic
loop can be written as a system of linear equations. For
example, the algebraic loop in Figure 1 can be written as
the following system of equations:{

y = x− 3

x = 2 ∗ y

An algebraic loop can thus be solved by constructing
such a system based on the cycle of blocks. Using the
set of blocks that form the linear component, a matrix
M1 and M2 will be generated. These matrices have sizes
M1numvar,numvar and M2numvar where the value numvar
is the number of variables in the set of equations, i.e. the
number of blocks in the component. These matrices can
then be used as input for a Gaussian Solver that calcu-
lates the resulting value for each block. An example of
such matrices is provided in Sections 3 and 4. Using these
results the appropriate state variables can be update upon
transitioning to a new state.

6Remember, if an algebraic loop is non-linear, we decide to stop
the execution of the program

2.4. Dynamic Block Rate

In her research internship, Christis (2012-2013)
introduced the concept of Adaptive Derivator- and
IntegratorBlocks. By monitoring the error between
the calculated result (by the CBD) and the analyti-
cal solution, the rate (or step size) of these blocks is
adapted to ensure that the error can be reasonibly
minimized. By calculating two different derivative

approximations f most exact(x) = f(x)−f(x−δ)
δ and

f less exact(x) = f(x)−f(x−2δ)
2δ and calculating the error

as error = f most exact(x) - f less exact(x) one can make
an estimate of the deviation of the calculated result from
the analytical solution. If this deviation is too large (or
too small), the step size δ is adapted such that the error
can be minimized.

This theoretical base can provide a good starting
point to look at the rate of the blocks during simulation.
Inside the class CBD, which is the AtomicDEVS model
of the original CBD model, a method updateRate is
provided. This method is a skeleton where the user can
implement a certain check to see whether the results in
the Atomic DEVS model are correct. If the deviation,
based on this check, is too large, the rate of the CBD will
be updated with a certain, user-defined factor.

A possible error check that could be performed is
the error monitoring described by Christis (2012-2013).
This is however not easy to accomplish in the current
state of the compiler, as the CBD is flattened before
compilation starts (see Section 4). The output values
of the blocks inside Derivator- and IntegratorBlock are
computed in separate states. Therefore, to allow such
monitoring, one should add a second variable inside the
CBDState state definition for each such block and update
this accordingly with different values for δ. In the current
state of the compiler, it is easier to compare the value of
the OutputPortBlock of the Derivator- or IntegratorBlock
with the known analytical solution of the input equation.

3. Design

Now that we have provided a theoretical basis for the
implementation of this compiler it is time to look at its
design. I will start by giving some general design insights,
after which I will discuss both the LaTeX and DEVS as-
pects on more detail.

3.1. General Design

As mentioned earlier the CBD model will not directly
be transformed into a DEVS model/LaTeX file. Rather
we will first transform the CBD model to an intermediate
language. This intermediate language will be the repre-
sentation of a Dependency Graph of the CBD model. The
reason I choose this design is that we can first solve both
the topological sort and strong component algorithm in

4

this Dependency Graph. Furthermore, since we already
constructed the strong components, we can search for
possible algebraic loops in the CBD. If this is the case
we can already transform these algebraic loops into a
proper structure as explained in Section 2.3. Before the
actual compilation starts, the necessary data is gathered
in dictionaries that will be used to properly construct
either the LaTeX file or the DEVS file.

The initial design, provided in the Reading Report,
showed a general structure of a transformation scheme
from CBD models to LaTeX text files or to DEVS models.
This structure however was based on the implementation
of the compiler using AToMPM. As already noted in
Section 1, the compilation of CBD models is actually
implemented using Python, starting from the Python
implementation of CBD’s. Therefore, these structures are
no longer valid, as the ”intermediate language” consists
of a dependency graph along with a series of dictionaries,
rather than a model of a dependency graph. However,
the general idea for the design remains the same. From
a CBD model a dependency graph is constructed. Using
this dependency graph the LaTeX file or the DEVS
python file is generated according to the respective design
described below.

3.2. Design of the LaTeX Component

The generated LaTeX file will consist of three distinct
parts. First, the Causal Block Diagram is described. This
descriptions includes a table that shows for each block in
the Causal Block Diagram its name and type, a system
of equations that describes the Causal Block Diagram and
lastly a graphical representation. Next, a description of
the Dependency Graph will be provided which contains a
table that shows the different components along with the
blocks that belong to this component, a table that shows
the dependencies between the blocks in the Causal Block
Diagram and a graphical representation of the Dependency
Graph. Lastly, a solution of the Causal Block Diagram will
be displayed. For this last section, three distinct options
are available:

1. The Causal Block diagram did not contain any loops:
In this case, a solution will be shown that displays for
each block its signal value

2. The Causal Block diagram did contain loops, but all
loops are linear: In this case the matrices that are
used as input for the Gaussian Solver are shown, as
well as their corresponding system of equations. A
table containing for each block its signal values is dis-
played as well.

3. The Causal Block diagram did contain loops, at least
one loop was non linear: A warning message is dis-
played that the Causal Block diagram contained a non
linear loop and a solution could not be found.

Most information in this document is straightforward. Fig-
ure 2 and 3 contain an example of a Causal Block diagram

with a linear loop and shows the resulting matrices along
with their system of equations.

Figure 2: Gaussian Solver Input Matrices example

Figure 3: Causal Block Diagram graphical representation

3.3. Design of the DEVS Component

The generated Python file containing the AtomicDEVS
model of the Causal Block diagram consists of the follow-
ing parts:

• CBDState: The state definition of the AtomicDEVS
which contains a variable for each block. These vari-
ables hold the signal value of the block. This class will
be used to store the values of the blocks as the simu-
lation runs. Values are updated at appropriate times
and a general description of the state of the Causal
Block Diagram can be accessed via the ”to string”
method.

• CBD: The AtomicDEVS that conforms to the Causal
Block Diagram model. This AtomicDEVS will con-
tain a state for each component (there are some ex-
ceptions, see Section 4). Inside the internal transition
method, the appropriate block values will be com-
puted and updated before proceeding to a next state.

5

• Root: The Root class is a CoupledDEVS that holds
the CBD AtomicDEVS model as only submodel. It is
used as input for the simulator and will have no other
purpose.

Besides the standard methods that are available in state
definition classes and AtomicDEVS classes the following
methods will be added to allow the computation of linear
loops:

• getValue: This method, present in the class CBD-
State, returns for a certain block name (as string) its
corresponding value. It will be used to construct the
input matrices M1 and M2 described in Section 2.

• constructLinearOutput: This method, present in
the class CBD, computes the matrices M1 and M2
used for solving a linear algebraic loop.

• gaussJLinearSolver: This method, present in the
class CBD, solves the linear algebraic loop based on
the input matrices M1 and M2.

4. Implementation

In this section I will discuss the implementation of the
CBD compiler. I will discuss the different constructs that
were used to generate the ”.tex” and ”.py” files as well as
some implementation decisions I made.

The implementation itself is written in Python and
uses the CBD model provided in the course Modelling of
Software-Intensive Systems as starting point for compila-
tion. In both cases, the dependency graph is constructed
using the available methods in the CBD implementation.
The file generation is performed using the built-in File
functionality of Python.
I will now divide my discussion, as both compilers – CBD
to LaTeX and CBD to DEVS – are constructed very
differently. In both cases I will try to follow the structure
of the corresponding file to provide decent structure.

4.1. CBD2LatexCompiler

A first step in the compilation process is the verify
whether certain properties of the Causal Block Diagram
are true. First, the CBD is checked for hierarchy. If
the CBD is hierarchical it is flattened, such that all its
contents are easily accesible, rather than having to use
recursive methods to retrieve all blocks. Next we check
whether the CBD contains a Derivator- or Integrator-
Block. This check is performed only to determine how
many iterations should be displayed in the solution. If it
contains no such blocks, only a single iteration suffices, as
the signal values will not change in the next iteration. If
these blocks are present, multiple iterations are displayed
as values can change.

The graphical representation in LaTeX is realised

using the tikz package. The next step in the compila-
tion process will thus be to setup a dictionary called
tikzLevels. This dictionary contains blocks that should
be displayed, organized in a level-like fashion. A level
represents a horizontal line of blocks. I use this setup
to limit the amount blocks that are horizontally aligned.
Otherwise, a part of the graph could fall ofscreen. The
levels are determined based on dependencies. Blocks in
level 1 will have no influencers, blocks on level 2 are
influenced by blocks on level 1, etcetera. This is not
necessarily an ideal layout mechanism, but it limits the
amount of edges crossing each other.

The next step in the compilation process is to con-
struct the textual description of the CBD. Here a table is
constructed using the blockname and blocktype of each
block. Furthermore, a system of equations is constructed
that describes the CBD. For each block, its equation is
constructed based on its influencers. Of course, in the case
of Constant- or TimeBlocks, this equation corresponds to
”being equal to a value”.

The graphical representation is built based on the
dictionary tikzLevels and the dependencies between
the blocks. This information is entered in a tikz specific
format, which produces a graph based image.

Next, the information concerning the dependency
graph is displayed. This is performed in the same way
as for the CBD. Here the information consists of the
components and their blocks on one hand, and blocks and
their dependencies on the other hand. The graphical rep-
resentation looks similar to the graphical representation
of the CBD, but the dependencies are mostly in reversed
order.

The last and most interesting section is constructed
based on the properties of the CBD. If the CBD contains
no loops, a single table is constructed displaying the signal
values of each block (the number of iterations depends on
the type of blocks in the CBD, see above). If the CBD
did contain loops and at least one loop was nonLinear,
then no specific information is constructed. In this case a
single message is produced.
If the CBD contained loops which are all linear, the input
matrices M1 and M2 are gathered from the CBD per
component and displayed in the document. For each
set of matrices, the equivalent system of equations is
constructed.

4.2. CBD2DevsCompiler

The CBD2DevsCompiler contains some additional
methods that aid in the compilation process:

• allInfluencersKnown: Used to determine which
block values can be determined from the initial state
of the CBD without actually running the CBD model

6

in a simulator. This is performed using value propa-
gation as far as possible.

• getActionStatement: Returns the update state-
ment to compute a block’s value inside the action
methods inside intTransition.

• getBlockValue: Used to initially set the block values
where possible in the CBDState. This method will
only be called if the value can actually be computed
at the initial state of the CBD, i.e. when the method
allInfluencersKnown returns True.

Using these methods the DEVS file is generated as
follows.
First the same checks are made as in the
CBD2LatexCompiler (Hierarchical, ContainsLoop).
Next, after the preface with the standard import state-
ments, 4 dictionaries are constructed that will be used in
the methods related to computing a linear algebraic loop.

1. dependsDict: Contains for each block all the blocks
it depends on. The list of blocks contains for each
block its name and can be used to ask the state for
the value of this block.

2. influencesDict: Contains for each block all the
blocks it influences.

3. componentDict: Contains for each strong compo-
nent in the dependency graph the blocks that belong
to this component. Entries of this dictionary is used
as input for the constructLinearOutput method

4. typeDict: Contains for each block its block type.
This dictionary is used in the constructLinearOutput
method to verify which block type a certain block has.

Next we construct the CBDState class. As stated before,
for each block whose value can be determined at the initial
state of the CBD, we enter this value in the CBDState
as it will never change. An exception here is that we
do not set the value for a TimeBlock and DelayBlock as
fixed, as they will change over time. All other blocks are
initialized using dictionary entries that are provided by
the action methods in the intTransition method. The
method getValue in CBDState is added to allow the
method constructLinearOutput to retrieve a value from
CBDState based on the block name.

The next step in the compilation process is to setup
the states of the CBD class. The state ”start” is always
present in each CBD. Furthermore, for each strong
component where the values of the blocks could not be
determined at setup, we add a new state. We check
whether these values are known by comparing them to
a list ”knownblockvalues” which contains all blocks that
are known at setup. Also we do not add a separate state
to the CBD AtomicDEVS for TimeBlocks, as their value
is only updated when we return to the start state (i.e.
when all other blocks are computed and a time step is
completed).

Next we construct the CBD AtomicDEVS class. We
start by providing the initializer which initializes the
state as the start state with all unknown values marked
as None. Next we add the methods timeAdvance and
outputFunc which respectively return the rate of the CBD
and an empty dictionary since the CBD does not produce
any direct output. Next we generate the intTransition
method which has a condition and action subfunc for
each state transition. A state transition always happens
between two consecutive components for which states
were created. From the start state we go to the first
component and from the last component we return back
to the start state. The action for each transition will
be to compute the block values inside the component
represented by the state we are transitioning from. The
new state, were we are transitioning to, will thus contain
the updated values for these blocks. Inside the condition
we will always verify that, for all influencers of each
block in the component the block value is not None (as
otherwise we are not able to compute its value). If these
values are None, we return None as new block value.
In the case of a linear algebraic loop, the block values are
computed using the method gaussjLinearSolver. Next
we provide the method extTransition, which returns an
empty dictionary as we do not use external transition in
this model. Lastly we provide the methods updateRate,
constructLinearOutput and gaussjLinearSolver
which are already discussed earlier. Lastly we construct
the fixed Root class.

An important implementation detail that I still need
to discuss is how the values for DelayBlocks are handled.
During initialization, the value for the DelayBlock is
initialized as its initial condition. Inside the intTransition
method, the value for the DelayBlock is not updated
in the state of its corresponding component, but it
is updated when its influencer is updated. When we
compute the new value for the influencer, the value for
this influencer in CBDState is still its old value. Therefor
we update the value of the DelayBlock with this old value
and then return both the new value for the influencer as
the new value for the DelayBlock.

5. Results

Along with this project, a series of test files are provided
which can be used to produce AtomicDEVS and ”.tex”
files from a number of CBD models. When simulating
these AtomicDEVS models, we clearly see that the results
are similar to the result of simulating the CBD model.
Furthermore, when rendering a pdf from the ”.tex” files
we clearly see that the information that is displayed is
correct. Furthermore we see that the compilation of the
CBD models to both LaTeX and DEVS runs reasonably
fast. The test suite, which generates a LaTeX file and a

7

DEVS model for 6 different CBD models, completes on
average in 0.165s7

6. Conclusion

Even though the original implementation was planned
using the AToMPM modelling tool, the resulting imple-
mentation appears to be sufficiently stable and easy to
use. Both for generating LaTeX files and DEVS models,
the compilation process can generate properly working
files without any user interference. Both in the case of
CBD models without loop and CBD models with linear
algebraic loops, the DEVS model computes the correct
output values. Furthermore we find that the LaTeX files
contain the correct information in all cases.

Future work for both compilers could include an au-
tomated monitoring element for dynamically changing
the rate. Furthermore the inclusion of logical operations
in both compilers could be applied. Further optimizations
could also consist of optimizing the data storage of block
values in the DEVS model.

References

Bolduc, J.S., Vangheluwe, H., 2002. Expressing ode models as devs:
Quantization approaches. quantum 2, 1.

Bolduc, J.S., Vangheluwe, H., 2003. Mapping odes to devs: Adap-
tive quantization, in: Summer Computer Simulation Conference,
Society for Computer Simulation International; 1998. pp. 401–407.

Christis, N., 2012-2013. Research internship 2: Hybrid systems.
EncyclopediaOfMath, 2011. Linear equation. URL:

www.encyclopediaofmath.org.
de Lara Jaramillo, J., Vangheluwe, H., Moreno, M.A., 2003. Using

meta-modelling and graph grammars to create modelling environ-
ments. Electronic Notes in Theoretical Computer Science 72, 36
– 50.

Posse, E., Lara, J.D., Vangheluwe, H., 2002. Processing causal block
diagrams with graph-grammars in atom.

Van Mierlo, S., Van Tendeloo, Y., Mustafiz, S., Barroca, B., 2014.
Debugging parallel devs.

Vangheluwe, H., 2012. Model transformation.
Zeigler, B.P., Praehofer, H., Kim, T.G., 2000. Theory of modeling

and simulation: integrating discrete event and continuous complex
dynamic systems. Academic press.

7tested on a Macbook Pro with a 2,9 GHz Intel Core i7 processor.

8

Appendix A. DepGraph algorithms

Listing 1: Topological Sort

topSor t () and d f s L a b e l l i n g () both r e f e r
to g l o b a l counter dfsCounter which w i l l be
incremented during the t o p o l o g i c a l s o r t .
I t w i l l be used to as s i gn an orderNumber to
each node in the graph .
dfsCounter = 1

topSor t () performs a t o p o l o g i c a l s o r t on
a d i r ec t ed , p o s s i b l y c y c l i c graph .
def topSort (graph) :

Mark a l l nodes in the graph as un−v i s i t e d f o r node in graph :
node . v i s i t e d = FALSE
Some topSor t a l go r i t hms s t a r t from a ” root ” node
(de f ined as a node wi th in−degree = 0) .
As we need to use topSor t () on c y c l i c graphs (in our strongComp
algor i thm) , t h e r e may not e x i s t such a ” roo t ” node .
We w i l l keep s t a r t i n g a d f s L a b e l l i n g () from any node in
the graph u n t i l a l l nodes have been v i s i t e d .
for node in graph :

i f not node . v i s i t e d :
d f s L a b e l l i n g (node)

d f sL a b e l l i n g () does a depth− f i r s t t r a v e r s a l o f a p o s s i b l y
c y c l i c d i r e c t e d graph . By marking nodes v i s i t e d upon f i r s t
encounter , we avoid i n f i n i t e l oop ing .
def d f s L a b e l l i n g (node , graph) :

i f the node has a l r eady been v i s i t e d , the recur s ion s t op s here
i f not node . v i s i t e d :

avoid i n f i n i t e l oops
node . v i s i t e d = TRUE

v i s i t a l l ne i gbours f i r s t (depth f i r s t)
for neigbour in node . out ne igbour s :

d f s L a b e l l i n g (neighbour , graph)
l a b e l the node wi th the counter and
sub s e quen t l y increment i t
node . orderNumber = dfsCounter
dfsCounter += 1

Listing 2: Strong Components

Produce a l i s t o f s t rong components .
Strong components are g iven as l i s t s o f nodes .
I f a node i s not in a cyc l e , i t w i l l be in a s t rong
component wi th on ly i t s e l f as a member .

def strongComp (graph) :
Do a t o p o l o g i c a l order ing o f nodes in the graph
topSort (graph)

note how the order ing in format ion i s not l o s t
in subsequent p roce s s ing and w i l l be used during
Time S l i c i n g s imu la t i on .
Produce a new graph wi th a l l edges

9

reversed . r ev graph = r e v e r s e e d g e s (graph)

Sta r t wi th an empty l i s t o f s t rong components
strong components = []

Mark a l l nodes as not v i s i t e d
s e t t i n g the s t a g e f o r some form of d f s o f rev graph
for node in rev graph :

node . v i s i t e d = FALSE

As s t rong components are d i s cove red and added to the
strong components l i s t , they w i l l be removed from rev graph .
The a l gor i thm terminates when rev graph i s reduced to empty .
while rev graph != empty :

Sta r t from the h i g h e s t numbered node in rev graph
(the numbering i s due to the ” forward” t o p o l o g i c a l s o r t
on graph
s t a r t nod e = highest orderNumber (rev graph)

Do a depth f i r s t search on rev graph s t a r t i n g from
star t node , c o l l e c t i n g a l l nodes v i s i t e d .
This c o l l e c t i o n (a l i s t) w i l l be a s t rong component .
The d f sC o l l e c t () i s very s im i l a r to strongComp () .
I t a l s o marks nodes as v i s i t e d to avoid i n f i n i t e l oops .
Unl ike strongComp () , i t on ly c o l l e c t s nodes and does not number
them .
component = d f s C o l l e c t (s ta r t node , rev graph)

Add the found s t rong component to the l i s t o f s t rong components .
strong components . append (component)

Remove the i d e n t i f i e d s t rong component (which may , in the l im i t ,
con s i s t o f a s i n g l e node) .
rev graph . remove (component)

10

