
Domain-Specific Modelling of complex User Interfaces

Pieter Aerts

pieter.aerts@student.uantwerpen.be

Abstract

This paper explores the implementation of the Interaction Object Graph
(IOG) in AtomPM. The IOG is an extension of the Statechart formalism
and was first introduced by Carr et al. (1994). It’s primary use case is the
specification of graphical widgets. AtomPM is a general purpose modelling
environment in which we define an abstract and concrete visual syntax for
the IOG-formalism. Through this method we create valid IOG-models, which
can then be mapped onto other formalisms, such as SCCDXML , or generate
code using a graphical user interface library. This could greatly speed up the
development and implementation of new and existing graphical widgets.

Keywords:
IOG, AtomPM, SCCDXML, user interface widget

1. Introduction

Carr et al. (1994) introduced the concept of the Interaction Object Graph,
a formalism designed for the specification of graphical widgets. It allows the
design of widgets at a level higher than that of programming languages. This
allows non-programmers to prototype and design complex user interfaces.
We will implement this formalism in AtomPM, by going through the usual
process of language design. Once we have a language through which can
formulate valid IOG-models, we can map these widget specifications onto
other formalisms or code. The SCCDXML-formalism seems like an excellent
candidate. Alternatively, we could generate code which uses a graphical user
interface library in python or javascript. This allows rapid prototyping and
testing of new and existing widgets.

This paper is structured as follows: Section 2 gives an overview of the
IOG-formalism. Section 3 describes the process of language design in AtomPM.

Preprint submitted to Elsevier December 18, 2014



Section 4 explores the various options for model to model transformations
and code generation from our IOG-models. Section 5 discusses future work
and section 6 concludes.

2. The Interaction Object Graph

Interaction Object Graphs (IOGs) Carr et al. (1994) are designed to add
widget specification to Interface Representation Graphs. They combine the
data flow and constraint specifications of IRGs with the statechart execution
model. Statecharts added four new states to the traditional state diagram:
the XOR meta-state, the AND meta-state and two types of history state.
These states are used in IOGs.

These meta-states can contain both normal states and other meta-states.
Transitions from meta-states are inherited by all contained states. This helps
reduce the problem of arc explosion. The XOR meta-state contains a sequen-
tial transition network where exactly one state inside of an XOR meta-state
is active. The AND meta-state on the other hand contains more than one
transition network and allows for parallel execution.

The history states work the same way as they do for Statecharts. When
a transition passes control from a meta-state, it remembers its last active
state in the history state. When a transition returns control to the history
state, the meta-state is returned to the remembered state. There are two
types of history states. The H state restarts meta-states at their start state
and provides one level of history. The H* works the same way but provides
multilevel history.

IOGs add two additional node types to the regular statechart: data ob-
jects and display states (Figure 1). A data object represents the storage of a
data item and control is never passed to them. They can only be destinations
for data arcs discussed below. Display states are control states that have a
change in the display associated with them. In IOG diagrams we use a pic-
ture of the display change to signal an update to the graphical representation
of that item.

2



Figure 1: Node Symbols

IOGs also add two special arc types: the event arc and data arc. Events
allow the designer to define ”messages” which may be lacking in the under-
lying specification model. An event is represented by a special transition
passing through and E in a diamond. (Figure 2)

Figure 2: Node Symbols

Data flow is represented in a manner similar to events - an arc passing
through a D in a circle (Figure 2). They can have any state as a source
and can only terminate at a data object or have an unspecified termination.
At least one end must be attached to a data object. Data flow arc with
data object as a source, whose destination arrow is unspecified, and whose
destination is outside of the containing interaction object, indicate externally-
readable data (Figure 3). Data flow arcs with data objects as destinations
represent updating the data object. If the arc’s source is a control state, it
represents a change in value when the arc conditional is satisfied. The label
of the data flow arc holds the new object value. An arc without a source
represents externally-writeable data (Figure 3).

3



Figure 3: Node Symbols

IOGs also allow the use of constraints. These are useful in specifying one
attribute of the user interface in terms of others. Data arcs support one-way
constraints by expressing the data value as an equation in terms of other
attributes. Together with a condition on data arcs, they allow the use of
Boolean guards.

2.1. Transition descriptions

To describe the transitions between states we need an abstract model of
the user interface and a description language for that model. IOG abstracts
the interface into the following objects: Booleans, numbers, strings, points,
regions, icons, view ports, windows, and user inputs. A brief description
follows.

Booleans, numbers and strings are the usual abstractions with the usual
operations. Numbers contain both the real and integer data types. Any of
these can be converted into an icon representation by the icon() operator.
This operation converts the Boolean, number or string to a text representa-
tion and then converts it to a picture.

Points are an ordered pair of numbers (x,y). They have the algebraic
operator which are normally associated with them. It may be assigned value
by writing p=(x,y). Also, p.x and p.y represent the x and y coordinates
from the point p.

A region is a set of display points defined relative to an origin called the
location. The location of the region is always the point (minx, miny) where
minx and miny are the smallest x and y coordinates in the region. Regions
have a size operator which returns the height and width of the smallest
rectangle which covers the region. Regions also have an in() operator which
tests if a point is located in the region. This operator returns a Boolean
value. Rectangles are commonly used for regions, but they are not restricted

4



to this shape. Note that a region cannot be visible on the display. It has no
drawing operation associated with it.

Icons are regions with pictures. Some points in the region have a color
number attached to them and are shown on the display. Icons add the opera-
tions draw and erase . If the origin of the icon is changed, there is an implicit
erase-draw operation sequence. A view port is a region with an associated
mapping for some underlying application data. This mapping consists of two
parts: conversion to a world-coordinate-system graphics representation and
projection onto the display.

Windows group the above objects together. They add a level attribute
which determines window stacking relative to other windows. A window with
a lower level obscures an overlapping window with a higher level.

All objects are addressed in the specification using a dot notation. For
example, ”win.icon1.location.x” would be the x coordinate of the location of
the icon, ”icon1”, in window, ”win”.

User inputs are mapped to IOG events, numbers, points and Boolean
values. Keyboard input is represented by quoted strings when the text is
important or by key events when the event is important. The mouse is
mapped to a point for location (M@), a point for relative change (M ∆), a
boolean indicating it moved (∆ M), button change events (Mv, M,̂ M2v,
...) and button states variables (Mdn, Mup, M2dn, ...). Since the value of
the mouse location is tested frequently, in[Region] is written as shorthand
for Region.In(M@). Special notations ˜[Region] and [Region]˜ mean
the event of the mouse entering and leaving Region. These symbols can be
used in expressions alongside the logical operators. We included an example
specification in Figure 4. It shows a simple draggable icon. An explanation
and other extensive examples can be found in Carr et al. (1994) .

5



Figure 4: Specification draggable icon

3. Language design in AtomPM

In the previous section we discussed the IOG Formalism. We defined the
abstract syntax by listing the different states and arcs and their semantic
meaning. The above pictures which use these concepts already have a notion
of visual concrete syntax. Both these aspects of the formalisms will have to
be implemented in the modelling environment AtomPM.

When designing languages in AtomPM we first construct a meta-model
for the language. This meta-model implements the abstract syntax for a
given formalism, in our case, the IOG. We use the Class Diagram formalism
to do this. The next step is specifying a visual concrete syntax using the
ConcreteSyntax formalism. This makes it possible to have a truly visual
syntax by defining the look of every class and association defined in the
abstract syntax. With our meta-model and concrete syntax defined, we can
create IOG instances that conform to our meta-model and are drawn by
using symbols defined in the concrete syntax. The point where we can draw

6



models and check if they are valid in respect to some meta-model is a major
milestone in designing a language.

4. Mapping IOG to other formalisms

In the previous section we explained how we can implement a given for-
malism in AtomPM by defining essential parts of the language. Now we can
create IOG models which specify the behaviour and appearance of a certain
graphical widget. The next step in the evolution of our language would be
to map it to other formalisms, providing extra functionality already present
in this other formalism.

For the IOG formalism, we see two paths we could take in this respect.
Since IOGs are related to statecharts and have different object classes, map-
ping them to SCCDXML can be an interesting avenue. ’SCCDXML” stands
for StateCharts Class Diagrams and XML. It combines the notion of classes
and associations between them with the expressive power of state charts for
the behaviour of these classes. The ability to execute valid SCCDXML mod-
els through the use of Javascript or python is a great thing for us, since we
do not have to interact with these languages directly. The generating of code
is already supported by the SCCDXML formalism. See Jonghe (2014) for a
complete overview.

Another option would be to export our model to a different modelling
framework such as Metadepth. Here we can use EGL (Epsilon Generation
Language) to generate code in Javascript or python, ideally using a graphical
user interface library which can draw the specified widget.

5. Future work

This report is written after the research-part of the project, which means
all the implementation as outlined above still needs to happen. There are
a lot of options when deciding how to exactly do this. We can start by
designing a language for IOGs in AtomPM, later deciding where to map to
or wether to generate code. This decision still needs to be made and will be
greatly based on feedback received.

6. Conclusions

This paper gives an overview of the Interaction Object Graph formalism
and how we can use it to specify graphical widgets. We explained how such a

7



formalism might be turned into a language by constructing a meta-model and
concrete syntax for it in AtomPM. Through this language we could create
valid IOG models. These specifications could then mapped onto different
formalisms, such as SCCDXML, or be used to generate code. A graphical
user interface library could be used to directly display the widgets and allow
them to be executed and tested. Regardless of the path we choose to take,
the goal is to evaluate the viablity of IOGs in user interface design by making
it easier to execute and test our specifications.

References

Carr, D., Jog, N., Kumar, H., Teittinen, M., Ahlberg, C., 1994. Using
interaction object graphs to specify and develop graphical widgets URL:
ftp://ftp.cs.umd.edu/pub/papers/TRs/3344.ps.Z.

Jonghe, G.D., 2014. Statecharts and Class Diagram XML: A general-purpose
textual modelling formalism. Master’s thesis. Faculty of Science University
of Antwerp Antwerp, Belgium.

de Lara, J., Guerra, E., Cuadrado, J.S., . meta-depth: A framework for deep
meta-modelling. URL: http://astreo.ii.uam.es/ jlara/metaDepth/.

Syriani, E., . Atompm: A tool for multi-paradigm modeling. URL:
http://syriani.cs.ua.edu/atompm/atompm.htm.

8


