
Analysis of RPG models with UPPAAL.

Stefaan Kenis

Department of cumputer science
Universiteit Antwerpen

stefaan.kenis@student.uantwerpen.be

Abstract

UPPAAL is a tool for modelling, simulation and verification of Real-Time
systems that is developed at the universities of Aalborg and Uppsala. This
tool is mostly used for systems that require communication and timing as-
pects and now we will analyse role-playing game models with this tool. The
creation of the game is done in UPPAAL itself and we also export models
from AToMPM to metaDepth. Then these models are transformed into valid
xml files that can be used in UPPAAL.
The current version of UPPAAL is available on http://www.uppaal.org.

Keywords: UPPAAL, role-playing game, deadlock, reachability, modelling,
simulation, verification, AToMPM, metaDepth

1. Introduction

In the previous report we described what UPPAAL is and how can use
it to do analysis. In this paper we will use UPPAAL to analyse role-playing
game models. In section 2 we explain the RPG models that we want to
analyse. In section 3 we explain how we created RPG models in UPPAAL. In
section 4 we explain how we exported RPG models from AToMPM, transform
them to a valid xml with EGL and imported them into UPPAAL. In section
5 we explain the analysis that is done on these models. In section 6 we give
a conclusion about analysing RPG models with UPPAAL.

Preprint submitted to Elsevier January 21, 2015

http://www.uppaal.org
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/projects/Stefaan.Kenis/report/reading_report.pdf


2. Role-playing game models

The game that we want to model consists of one or multiple scenes.
Each scene consists of tiles of which adjacent tiles are connected in both
directions. There should be exactly one hero in the game. There also is
another character: the villain. Hero and a villain can not stand on the same
tile and they can attack each other when they are on adjacent tiles. Other
items in the game are goals and traps. A goal is an item that the hero wants
to pick up and a trap does damage when the hero steps on it. The game
finishes when the hero has collected all goals or when the hero has died.
To make the models easier to make and understand we limit the number of
villains to one. The reason for this will be explained in the next section.
There can be multiple goals and traps in the game. And we only look at one
scene, because this does not change the analysis much. In the original RPG
models it was also possible to have an obstacle. If we do not draw the tiles
with obstacles, then we do not have to worry about that either. The goal
was to make the models easy to make and understand, without changing the
analysis too much.

3. Creation of models in UPPAAL

In UPPAAL we have the possibility for creating elements that are com-
bined to a system. These elements can communicate to each other by using
channels. The elements that our game needed are Hero, Villain and Turn.
We explain each of them separately.

3.1. Hero

The most important element in our game is the hero. The hero should
be able to walk to all reachable tiles. So we started by creating locations for
every tile and connecting them with edges in both directions between two
adjacent tiles. For each location we needed a boolean that showed if the
hero is standing on that tile or not. So always exactly one of these booleans
should be true. We also had to define the initial location of the hero. Then
we needed a variable that represented the health of the hero. Initially it is
set to 100. Now for every edge we had to include guards, synchronisation
and updates. The guards are the conditions for when the hero is allowed to
take that edge. In our game the hero was not allowed to walk to a tile where
a villain is standing. So we also needed data variables for where the villain is

2



standing. If the tile we want to go to is empty the hero can walk there. When
the hero walks it will send a message: ”HeroTurn!”. The update section will
update the data variables about where the hero is standing. When the hero
wants to walk to a trap the guard also includes information about whether
he has already stepped on the trap or not. If it is the first time, then the
hero loses 10 health and the boolean for the trap is set to true. This way the
next time that the hero moves to this tile, it is the same as walking on an
empty tile. For a goal we do something similar, we set the boolean for that
goal to true.
Then we still need to be able to fight the villain. This is done by creating
self-edges. The guard makes sure that the villain stands on an adjacent tile.
We also send the message ”HeroTurn!” and decrease the health of the villain
with 10. An example of the hero looks like this:

Figure 1: Hero (9 tiles, 1 trap, 2 goals)

3.2. Villain

The part of the villain is similar to that of the hero. The villain needs
the same structure of locations and edges. It has to check that he does not
walk to a tile where the hero is standing. It sends the message ”VillainTurn!”
and updates the variables that show where he is standing. The villain can
fight the hero if he is on an adjacent tile. The villain does not need to know
anything about goals and traps. The part of the villain looks like this:

3



Figure 2: Villain

3.3. Turn

The last part is Turn. This keeps track of whose turn it is. It receives
the messages from both hero and villain and makes sure the right character
can do an action. If both goals are picked up, their booleans are true, then
the game is finished. This results in a deadlock state called ”Won”. If the
hero has no more health the game also stops in the state called ”Died”. It is
also possible that the villain is dead. Then the hero can keep moving until
he dies or has picked up all goals. The turn part looks like this:

Figure 3: Turn

4



4. Export models from AToMPM

We could already export models from AToMPM to metaDepth. These
metaDepth models can be transformed in a valid xml file that can be used
in UPPAAL. This transformation is done with EGL (Epsilon Generation
Language). We have restricted our model again to have one villain. We also
did not include fighting and stepping on traps and goals. The reason for this
is because it is more complicated to adapt the right variable. We don’t know
what goal we are on, we only know we step on a goal. Also fighting is not
easy, because we need to know all outgoing links for one tile and check if the
other character is on one of them. So both hero and villain can walk and
they can not both stand on the same tile. To complete this kind of model
to a model with traps, goals and fighting is easy in UPPAAL. If we import
such a model in UPPAAL it looks like this (Note that all labels are on the
same place, because an association in AToMPM does not have a position
attribute):

Figure 4: Hero (Exported model from AToMPM to UPPAAL)

5



5. Analysis

The analysis was mostly done on the models created in UPPAAL itself,
because they are an extension of the models that were made by exporting
AToMPM models. UPPAAL had both a simulator and a verifier to analyse
models. The simulator is used more in the implementing phase, because this
way we can see very fast if the game does what it should do. But if we want
analysis for all possible executions we need to use the verifier. UPPAAL is
known for analysing deadlocks and reachability. This are important prop-
erties for our RPG models. We now explain the checks that we did on the
model explained in section 3 one by one.

Figure 5: Reachability checks.

Maybe the most important question is that the hero can reach all goals
in the game. Otherwise the hero can never win the game and maybe the
game will go on forever. So for every goal we have included a check. These
are the two first checks, because we have two goals in this model. It literally
tells us if there exists a path from the initial state to the goal state. Then we
have also included a check that the villain can reach the hero (and thus can
reach all tiles that the hero can reach). Otherwise the villain is just walking
in another group of tiles, which is useless and not what we want.

6



Figure 6: Check at most one character on tile.

These checks are rather trivial. For every tile we check if the hero and
villain never stand on the same tile.

Figure 7: Check health of characters.

This kind of checks are invariants. For every state the system is in, this
property should be true. The first two lines make sure the health of both
characters is always in the right range. The last is maybe not that intuitive.
This actually says that the hero never dies. This is true, because the hero has
more health than the villain and both characters can only attack each other
in turn. So the villain always dies before the hero and there are not enough
traps in the game to let the hero die. If we change the initial health of the
characters (hero smaller than villain), then this invariant does not hold any
more.

7



Figure 8: General checks.

The first one shows that the hero must stand on a goal tile when the game
is finished. It has just picked up the last goal. The second check is that the
hero must have lost health, when he has stepped on a trap. His health can
not be larger than 90 any more. The third line shows that the game can
still finish if the villain has died. Of course this check is not enough, because
we want that our game only finishes when all goals are picked up. This is
checked in the last line. It says that the game will not deadlock if at least
one of the goals is not picked up yet. Remember that the hero can not die
in this specific model, otherwise the game should also end when he dies.
All checks that we have discussed passed. For other models we can do the
same kind of checks again.

6. Conclusion

UPPAAL is a good tool for creating and analysing RPG models. The tool
is easy in use and very efficient in analysing. The communication channels
between different parts of the system are useful for alternating turns, which
we need in role-playing games. UPPAAL can analyse important properties
for RPG. It is important to analyse reachability to know which states of the
game are reachable. It is also very useful to know the deadlock states of the
game. They tell us when the game can stop. In an RPG this is when the
hero has picked up all goals or dies.

8


	Introduction
	Role-playing game models
	Creation of models in UPPAAL
	Hero
	Villain
	Turn

	Export models from AToMPM
	Analysis
	Conclusion

