
Explicit modelling of DEVS experiments in AToMPM

Timmy Nelen

Abstract

We propose a language to graphically model experiments, and a way to
transform these graphical representations into a usable configuration to be
used in the DEVS formalism.

Keywords: AtomPM, DEVS, SED-ML, EGL, Transformations

1. Introduction

When it comes to running experimental simulations, we have a wide ar-
ray of options, frameworks and languages to work in. In this report we will
discuss how we can expand the existing framework that allows us to model
DEVS (textual simulation language) in AtomPM (a visual modelling lan-
guage). AtomPM allows us to create our own Meta-Models, and making
use of a pre-made DEVS Meta-Model we are able to create our own version
of a language wherein we can create visual representations of experiments,
in a format that allows us to export it to a DEVS-framework (in this case,
PyPDEVS).

Section 2 introduces us to our research material, Section 3 will talk about
the SED-ML paper, Section 4 will briefly talk about DEVS, section 5 will
discuss possible additions we can do, and Section 6 will outline the approach
we will take to make this all possible.

2. Research material

This reading report is based off of the following 2 papers:

1. ”Reproducible computational biology experiments with SED-ML - The
Simulation Experiment Description Markup Language” (Waltemath et
al.)

2. ”Debugging Parallel DEVS” (Van Mierlo, Van Tendeloo et al.)

Preprint submitted to Model-Driven Engineering Course 2014-2015 December 18, 2014



in combination with the PyPDEVS documentation.
The first paper discusses SED-ML, short for Simulation Experiment De-

scription Mark-up Language. This is a computer-readable exchange format
to report information needed to reproduce simulation experiments. This pa-
per talks about how SED-ML encodes all the needed information into XML,
making it computer-readable and easy to use. It also provides methods to
modify experiments (via parameters or the actual model structure of the
experiment).

The second paper is a technical report on PDEVS, mainly used for back-
ground information.

3. SED-ML

SED-ML is a technology created specifically for facilitating the reproduc-
tion of simulation experiments. Often researchers spend a lot of time running
multiple, slightly different, experiments on a set of data, without an easy way
to manipulate the experiment in question, apart from actually editing the
code.

Using the SED-ML, we can circumvent this problem by providing the
researcher with an XML-file (easily computer-readable and -editable) that
describes the experiment. In here we can find several parameters and options
for the experiment so that we can run the experiment in several different ways
without having to change the actual code.

Also included are ways to include combinations of models, output gener-
ation and grouping of output.

A visual representation of SED-ML is shown below.

2



The way this paper is related to the project is that we are also trying
to find a way to describe experiments (here in a visual way, as opposed to
textual XML), and give the researcher ways to modify the experiment to
his likings. For this we will have to provide visual elements to modify the
parameters of the experiment and provide additional functionality, which will
get processed and included in the resulting DEVS code.

4. DEVS

A good introduction to DEVS can be found in (Van Mierlo, Van Tendeloo,
Mustafiz, Barroca , 2014, p. 4-6). DEVS is implemented in AtomPM as
follows:

3



As we can see, a basic DEVS system can be modelled using this Meta-
Model. Our goal is to expand this visual notation.

5. Additions

Most of the basic functionality is already implemented in the basic DEVS
framework in AtomPM but there are many other functions which we are able
to implement, for example:

5.1. Random seeding

When we have an experiment which encompasses a random number gen-
erator (RNG), we may be interested in setting our own seed (starting value)
for this RNG. This can help us analyse the simulation better if we can guar-
antee the exact same outcome.

5.2. Custom parameters

While the basic DEVS AtomPM framework is complete, PyPDEVS allows
us to set many more parameters. Some additions I propose are:

setClassicsDEVS Limit DEVS to the basic model

setDrawModel Disable model drawing if we aren’t interested in its visual representa-
tion

setLogging Set a destination file for the logs to be written to

setShowProgress Allows ASCII-progress to be shown

4



setTerminationTime Set a maximum time for the simulation to run

setVerbose Allow verbose output in a file

These are some of the possiblities that are offered within PyPDEVS which
can be implemented visually to allow us more control over the actual exper-
iment. The logging functionality is mainly used for analysis afterwards.

Using a custom logging system we can set up our experiment to log mean-
ingful data to a file, in a GNUPlot-readable format. This allows us to create
plots of the system. We can extend this as far as we want to get as much
detail as we want in our plots. When it comes to optimizing experiments we
can opt for limited logging, as the intermediate values aren’t of interest, but
for manual analysis we may want very detailed plots. To do this in practice
we will need to create a cost-function to determine the performance of our
experiment at set intervals.

6. Approach

The approach we will take for this project is in 3 distinct steps:

6.1. Visual modelling

We aim to create a separate visual language to be used in combination
with the existing DEVS framework in AtomPM. With this we mean that we
will be adding several new elements that can all be configured separately. As
this will be a separate model, it will not interfere with the existing DEVS
standard and can be treated as an add-on.

6.2. Transformation to a usable format

One of the ideas for this was to use the Metadepth-export tool used in
the practical courses, so we will be using this.

6.3. Transformation into DEVS

When we have the Metadepth-file we have a file that can be easily worked
with. EGL (as seen in the practical courses as well) will be used to transform
this Metadepth file into a Python file, conform to the DEVS standard.

5



7. Bibliography

Van Mierlo, Van Tendeloo, Musafiz, Barroca 2014. Debugging Parallel DEVS

Waltemath et al. 2014. Reproducible computational biology experiments with
SED-ML - The Simulation Experiment Description Markup Language

6


