Explicit modelling of DEVS experiments in AToMPM

Timmy Nelen

Abstract

This paper proposes a graphical language to allow lesser-techniaclly skilled
developers to make changes in simulations to get desired results. These con-
structs then get transformed into a simulation to be ran in a DEVS simulator.

Keywords: AtomPM, DEVS, SED-ML, EGL, Transformations

1. Introduction

When it comes to running experimental simulations, we have a wide ar-
ray of options, frameworks and languages to work in. In this report we will
discuss how we can expand the existing framework that allows us to model
DEVS (textual simulation language) in AtomPM (a visual modelling lan-
guage). AtomPM allows us to create our own Meta-Models, and making
use of a pre-made DEVS Meta-Model we are able to create our own version
of a language wherein we can create visual representations of experiments,
in a format that allows us to export it to a DEVS-framework (in this case,
PyPDEVS).

Section 2 introduces us to our research material, Section 3 will talk about
the SED-ML paper, Section 4 will briefly talk about DEVS, section 5 will
discuss possible additions we can do, and Section 6 will outline the approach
we will take to make this all possible.

2. Research material

The reading part of this report is based off of the following 2 papers:

1. ”Reproducible computational biology experiments with SED-ML - The
Simulation Experiment Description Markup Language” (Waltemath et
al.)

2. "Debugging Parallel DEVS” (Van Mierlo, Van Tendeloo et al.)

Preprint submitted to Model-Driven Engineering Course 2014-2015 September 3, 2015

in combination with the PyPDEVS documentation.

The first paper discusses SED-ML, short for Simulation Experiment De-
scription Mark-up Language. This is a computer-readable exchange format
to report information needed to reproduce simulation experiments. This pa-
per talks about how SED-ML encodes all the needed information into XML,
making it computer-readable and easy to use. It also provides methods to
modify experiments (via parameters or the actual model structure of the
experiment).

The second paper is a technical report on PDEVS, mainly used for back-
ground information.

3. SED-ML

SED-ML is a technology created specifically for facilitating the reproduc-
tion of simulation experiments. Often researchers spend a lot of time running
multiple, slightly different, experiments on a set of data, without an easy way
to manipulate the experiment in question, apart from actually editing the
code.

Using the SED-ML, we can circumvent this problem by providing the
researcher with an XML-file (easily computer-readable and -editable) that
describes the experiment. In here we can find several parameters and options
for the experiment so that we can run the experiment in several different ways
without having to change the actual code.

Also included are ways to include combinations of models, output gener-
ation and grouping of output.

A visual representation of SED-ML is shown below.

Simulation

Data Generators

| S
{7 Reossesssmmasis

Figure 2 Main SED-ML elements. High level overview of the relations between the five major elements of a SED-ML document. Pairs of model
and simulation elements are used in tasks. The dataGenerators allow to define the post-processing of simulation data to define the desired
output (plots or reports)

The way this paper is related to the project is that we are also trying
to find a way to describe experiments (here in a visual way, as opposed to
textual XML), and give the researcher ways to modify the experiment to
his likings. For this we will have to provide visual elements to modify the
parameters of the experiment and provide additional functionality, which will
get processed and included in the resulting DEVS code.

4. DEVS

A good introduction to DEVS can be found in (Van Mierlo, Van Tendeloo,
Mustafiz, Barroca , 2014, p. 4-6). DEVS is implemented in AtomPM as
follows:

InternalTransition

*

CoupledDEVS BaseDEVS 1 |AtomicDEVS State

xte¢rnalTransitior

+ select : code = return imm[§] +name : string 1 states | +name: string

+ attributes : list<SATTRIBUTE> = + initial : bool
+ parameters : liSt<SARG> = +time_advance : code)
+__init__: code % + output : code
+ position : list<int> = 0,0 statedef
+ scale listeinta = 0,0
-
-
channel 3
*[Ve Fd —
g Devslnstance Port Simulation StateDefinition
= +name : string 1 ports +name : strin + end_condition : code +name : string
3 +devs_type : string + position : list<int>= 0,0 + attributes : list<SATTRIBUTE> =
o + parameter_binding : listsmgp<[name,val],[string,string]>3 = + parameters : list<SARG> =
2 + position : list<int>= 0,0 +initial_binding : list<map<[dame,val] [string,string]>> =
I +scale : list<int> = 0,0 +_init__: code
Event InputPort OutputPort

+name : string
+ attributes : list<SATTRIBUT[E> =
+ parameters : list<SARG> =
+__init__: code

As we can see, a basic DEVS system can be modelled using this Meta-
Model. Our goal is to expand this visual notation.
5. Additions

Most of the basic functionality is already implemented in the basic DEVS
framework in AtomPM but there are many other functions which we are able
to implement, but this paper mainly focusses on customizing parameters in
the experiment.

5.1. Custom parameters

PyPDEVS supplies an easy-to-use interface to customize settings to your
desire, for example:

setDrawModel Disable model drawing if we aren’t interested in its visual representa-
tion

setLogging Set a destination file for the logs to be written to (VCD and XML
format)

setTerminationTime Set a maximum time for the simulation to run
setTerminationCondition Set a custom function as a termination condition

setVerbose Allow verbose output in a file

These are some of the possiblities that are offered within PyPDEVS which
can be implemented visually to allow us more control over the actual exper-
iment. The logging functionality is mainly used for analysis afterwards.

Using a custom logging system we can set up our experiment to log mean-
ingful data to a file, in a GNUPlot-readable format. This allows us to create
plots of the system. We can extend this as far as we want to get as much
detail as we want in our plots. When it comes to optimizing experiments we
can opt for limited logging, as the intermediate values aren’t of interest, but
for manual analysis we may want very detailed plots. To do this in practice
we will need to create a cost-function to determine the performance of our
experiment at set intervals.

6. Approach
The approach we will take for this project is in 4 distinct steps:
6.1. Abstract modelling

First of all, we need an abstract syntax to represent our elements in. This
is what this syntax looks like:

i

H

! [_Class_SetModeloay
model T

CEFEF

-~ Class_SsivCD
Tianame

Class_RootModelD
|

Every building block is a subtype of a very general block for easy com-
putation and linking.

6.2. Visual modelling

We aim to create a separate visual language to be used in combination
with the existing DEVS framework in AtomPM. With this we mean that we
will be adding several new elements that can all be configured separately. As
this will be a separate model, it will not interfere with the existing DEVS
standard and can be treated as an add-on.

The implementation of this looks as follows

NexiStep Loop
....... e
T e A A
i i i i ! :
HEH : | ' '
SetRealTime ‘ i | setbrawmodel | i [Sellogging I i ' i
. ! ! h]
i P ‘ ' !
: I
‘ Hl AL ,, '
: :
i
' i
H 1
I 1
H 1
|
Simulatelcon

For this project I've kept the basis nice and simple. There are several
blocks that depict actions can you undertake on the data, a few connectors
(which aren’t required), a "root” object to supply the models name, and an
element to start the actual simulation.

An example of a simple simulation looks like this:

s

[SetxML | [sm@mimﬁmcﬂnlmml SetModelAttribute
SetDrawiModel l Sstlogging J SetVCD
Setverbose l SatRealTime J Seru'rminalinn'ﬂ'i@

As you can see, connections aren’t strictly needed. As these blocks are
only there to change some parameters, the order is not important, and ev-
erything else gets handled in the back-end.

6.3. Transformation to a usable format

To convert this visual interface into a format that PyPDEVS can use
(e.g., Python code), the MetaDepth-exporter was used. This transforms the
visual elements into plain text, which we can then convert into Python code
using the EGL language, giving us pure Python instructions. The EGL code
scans around for all available blocks, converts them one by one into Python
instructions and puts the appropriate imports and static commands in the
file so we have a complete program.

7. Bibliography
Van Mierlo, Van Tendeloo, Musafiz, Barroca 2014. Debugging Parallel DEVS

Waltemath et al. 2014. Reproducible computational biology experiments with
SED-ML - The Simulation Experiment Description Markup Language

