
Implementation of a CVL to Clafer transformation

Tom Wijsman

Model Driven Engineering 2014-2015
University of Antwerp

Abstract

Clafer and CVL are currently developing modeling languages that combine
modeling languages with variability. They tackle historical problems when
introducing variability in existing models. Clafer is textual and concise;
CVL is visual and an expansion. In order to make comparisons, interac-
tions and migrations between these two modeling languages more possible; a
transformation is implemented that transforms CVL models to Clafer. For
completeness, note that the transformation in the opposite direction already
exists in the Clafer Compiler.

Keywords: Choices, Clafer, Class, Constraint, CVL, EGL, ETL, Feature,
Feature Model, Generation, Language, Reference, Representation, Textual,
Transformation, Unification, Variability, Variation, Visual

1. Introduction

An implementation of a CVL to Clafer transformation is outlined. This
implementation is then verified by transforming back from Clafer to CVL.

1.1. Context

For the course Model Driven Engineering at the University of Antwerp a
project is studied and implemented. This project incorporates most of the
knowledge exchanged at the course lectures and practicums, which covers
(but is not limited to) theory and practice about modeling languages, syntax,
semantics and transformations.

Email address: Tom.Wijsman@student.uantwerpen.be (Tom Wijsman)

Preprint submitted to Modelling, Simulation and Design lab January 21, 2015

In the previous paper by Wijsman (2014) that introduced this project
the CVL and Clafer languages were studied, their tools were explored and a
summarizing look at the history of modeling languages with variability has
been made. In that paper the problem has been described and future work
has been planned. This paper implements that work as a solution to it.

1.2. Problem

Each language has its own representation by design; Clafer is textual,
whereas CVL is graphical. Someone interested in such languages will com-
pare representations and perhaps prefer one representation over the other.
In interactions between people there can be interactions where one person
uses Clafer, whereas the other person uses CVL or vice versa. It is also
possible that someone needs to switch between Clafer and CVL. Being able
to transform one representation into the other and vice versa could help for
these comparisons, interactions and migrations.

Searching for existing solutions yields that the Clafer compiler can pro-
duce a CVL representation from a Clafer model; however, the transformation
in the other direction from CVL to Clafer does not seem to exist. The trans-
formation from CVL to Clafer outlined in this paper implements this.

1.3. Overview

First the transformation steps are enumerated in section 2, which are
explained in detail in subsections 2.1 - 2.6. Then an example CVL to Clafer
transformation result is given in section 3. This example will be verified by
transforming the Clafer example result back to CVL and comparing them
in section 4. A conclusion is given in section 5. Future work is discussed
in section 6. The requirements, files and execution of the project’s work are
summarized in section 7.

2. CVL to Clafer transformation

Transformation from CVL to Clafer is done in multiple steps, which in-
cludes reuse of the generation language EGL and the transformation language
ETL. The framework metaDepth for multi-level meta-modeling is used in in-
termediate steps. An overview of the steps that are performed:

1. identify a reasonable set of common features that exist in both CVL,
Clafer and their constraint languages;

2

2. create an abstract and concrete visual syntax of CVL in AToMPM;

3. export a metaDepth model of CVL from AToMPM by using a AToMPM
to metaDepth exporter;

4. transform the metaDepth model of CVL to Clafer by using ETL (Ep-
silon Transformation Language);

5. generate concise syntax in Clafer from the metaDepth model of Clafer
by using EGL (Epsilon Generation Language).

2.1. Identification of common features

The following table lists the features of CVL and their Clafer equivalents:

CVL Clafer

Variability Specification Class/Feature Type

Variability Choice Feature

Variability Variable Type Definition

Optional VSpec ”?” behind the Class/Feature Type

Type of Variable ”: Type” behind the Class/Feature Type

Group Cardinality ”xor” (1..1), ”or” (1..*) or ”x..y” (x..y)
before the Class/Feature Type

Children of a VSpec Indented one level deeper than the parent

For constraints a transformation between two small custom constraint
languages has been invented, as a transformation between the whole con-
straint languages could be considered a project on its own.

2.2. Abstract syntax of CVL in AToMPM

In figure 1 the abstract syntax metamodel of CVL in AToMPM can be
seen.

A Root class is added to give a notion of a starting point for the transfor-
mation. The whole metamodel revolves around the central VSpec (short for
Variability Specification) class, which can either be a Choice (with a name)
or a Variable (with a name and type) class. A VSpec can have VSpecs
as children; either through a mandatory link, an optional link or through a

3

GroupCardinality class (with a minimum and maximum amount of connected
children).

A Constraint class is added such that constraints can be connected to a
VSpec. A connected Constraint allows to put constraints on the selection
and assignment of the children of the VSpec. One constraint is given by the
ChoiceConstraint class; which uses ”And” and ”AndNot” links to determine
respectively which children can and can’t be chosen together. The other
constraint is given by the ComparisonConstraint class; which allows to make
comparisons between a child that is connected through the LHS link and a
child that is connected through the RHS link.

Not shown in the figure is that the classes and links in the metamodel
are also given various cardinalities, such that only sane CVL models can be
made.

Figure 1: The abstract syntax metamodel of CVL in AToMPM.

2.3. Concrete visual syntax of CVL in AToMPM

For each class and link in the abstract syntax metamodel, a concrete
visual syntax has been made to be able to visually create and represent a

4

CVL model.
In figure 2 you can see the concrete visual syntax for a root element in

AToMPM. It is small, as in a CVL model there isn’t supposed to be a visual
root element visible; it is solely here to assist the transformation.

Figure 2: Concrete visual syntax for the root of CVL in AToMPM.

In figure 3 you can see the concrete visual syntax for the two variability
specifications of CVL in AToMPM. A choice is a rectangle with round cor-
ners, which contains its name. A variable is an oval, which contains both
its name and type separated by a colon. It is visually similar to the CVL
representation.

Figure 3: Concrete visual syntax for the variability specifications of CVL in AToMPM.

In figure 4 you can see the concrete visual syntax for the children links
between variability specifications of CVL in AToMPM. A mandatory link
is in black bold, whereas an optional link is in a thin gray; this makes the
difference clear. It is however visually different from the CVL representation,
as the dash-dotted line of CVL could not be reproduced in AToMPM.

In figure 5 you can see the concrete visual syntax for the group cardinal-
ities of CVL in AToMPM. It shows the minimal and maximal cardinality. It
is visually similar to the CVL representation.

In figure 6 you can see the concrete visual syntax for the custom con-
straints in AToMPM. A smaller rectangle has been chosen here to look sig-
nificantly different from variability specifications. The type of constraint is

5

Figure 4: Concrete visual syntax for the variability specifications children links of CVL in
AToMPM.

Figure 5: Concrete visual syntax for the group cardinalities of CVL in AToMPM.

shown inside the rectangle. For the comparison contraint additionally the
comparison operator is shown inside the rectangle.

Figure 6: Concrete visual syntax for custom constraints in AToMPM.

In figure 7 you can see the concrete visual syntax for the custom choice
constraint links in AToMPM. A green ”And” link is used to denote inclu-
sion. A red ”AndNot” link is used to denote exclusion. They are therefore
significantly different as to not be confused with other links.

In figure 8 you can see the concrete visual syntax for the custom compar-
ison constraint links in AToMPM. Both links list the side of the comparison
they link to; thus one link is connected to the LHS VSpec, whereas the other
link is connected to the RHS VSpec.

2.4. Export of AToMPM CVL model to metaDepth

When exporting the metamodel in AToMPM and any models in AToMPM
to metaDepth files, you get a metaDepth model of the CVL metamodel as

6

Figure 7: Concrete visual syntax for the custom choice constraint links in AToMPM.

Figure 8: Concrete visual syntax for the custom comparison constraint links in AToMPM.

well as metaDepth models of the CVL models. The metaDepth model of the
CVL metamodel serves as the metamodel for the metaDepth models of the
CVL models.

2.5. Transformation to Clafer in metaDepth using ETL

1 Model ClaferMM {
2 Node Link {
3 s r c : Node ;
4 dst : Node ;
5 }
6
7 Node Root {}
8
9 Node C la f e r {

10 Name : S t r ing = ”” ;
11 Optional : boolean = f a l s e ;
12 Type : S t r ing = ”” ;
13 CardType : S t r ing = ”” ;
14 IsRootElement : boolean = f a l s e ;
15 }
16
17 Node Constra int {

7

18 Constra int : S t r ing = ”” ;
19 }
20
21 Node ClaferToRoot : Link {}
22 Node ClaferToParent : Link {}
23 Node Constra intToCla fer : Link {}
24 }

The Clafer metamodel in metaDepth has been kept simple and is shown in
the code above. A Root node is again introduced to assist the transformation
process. A Clafer node represents multiple CVL features, which are captured
in its parameters (name, optional, type and cardinalities). The Constraint
node allows constraints to be added. Besides those nodes, there is the ability
to instantiate links between the nodes (between clafer and root, between
clafer and a clafer and between clafer and a constraint).

The Clafer node also has an IsRootElement to be able to enumerate them.
This is because a bug during the generation process requires referenced in-
stantiated nodes to go before the instantiated nodes that reference them. As
the instantiated Root element is put last, it is not seen during the generation
process.

In the code listings that follow the ETL based transformation is explained
in detail.

1 r u l e CVL2Clafer
2 trans form s : Source ! Root
3 to t : Target ! Root {
4
5 }
6
7 r u l e CVL2Clafer C2R
8 trans form s : Source ! VSpecToRoot
9 to t : Target ! ClaferToRoot {

10 var c : new Target ! C l a f e r ;
11 c .Name = s . s r c .Name ;
12 c . Optional = f a l s e ;
13 c . IsRootElement = true ;
14
15 s . s r c . enumChildren (c) ;
16

8

17 t . s r c = c ;
18 t . dst = s . dst . equ iva l en t () ;
19 }

In the code listing above the CVL root and CVL root VSpecs are respec-
tively transformed into a Clafer root and Clafer root clafers. The clafers’
parameters are filled in and the clafers are linked to the Clafer root. Then
the children of the VSpecs are enumerated recursively, as the visual tree
design allows us to easily approach the child nodes in a recursive way.

1 opera t i on Source ! VSpec enumChildren (newse l f : Target !
C l a f e r) {

2 s e l f . enumMandatoryChildren (newse l f) ;
3 s e l f . enumOptionalChildren (newse l f) ;
4 s e l f . enumGroupCardinal it ies (newse l f) ;
5 s e l f . enumConstraints (newse l f) ;
6 }

In the code listing above an enumeration happens for the mandatory and
optional children of a VSpec, as well as the connected group cardinalities and
constraints.

1 opera t i on Source ! VSpec enumMandatoryChildren (newse l f :
Target ! C l a f e r) {

2 f o r (e in MandatoryChildOf . a l l . s e l e c t (i | i . dst . name
= s e l f . name)) {

3 var c : new Target ! C l a f e r ;
4 c .Name = e . s r c .Name ;
5
6 i f (e . s r c . isTypeOf (Source ! Var iab le)) {
7 c . Type = e . s r c . Type ;
8 }
9

10 var n : new Target ! ClaferToParent ;
11 n . s r c = c ;
12 n . dst = newse l f ;
13
14 e . s r c . enumChildren (c) ;
15 }
16 }

9

In the code listing above, the mandatory children of a VSpec are enumer-
ated. The parameters are set according to the corresponding VSpec (if it is
a variable, take over its type) and a corresponding link is made.

The code listing for optional children is left out of this report, since it is
similar and additionally sets the optional parameter to be true.

1 opera t i on Source ! VSpec enumGroupCardinal it ies (newse l f :
Target ! C l a f e r) {

2 f o r (e in GroupCardinalityToVSpec . a l l . s e l e c t (i | i .
dst . name = s e l f . name)) {

3 i f (e . s r c . min = ”1” and e . s r c . max = ”1”) {
4 newse l f . CardType = ” xor ” ;
5 }
6 e l s e i f (e . s r c . min = ”1” and e . s r c . max = ”∗”) {
7 newse l f . CardType = ” or ” ;
8 }
9 e l s e i f (e . s r c . min = ”0” and e . s r c . max = ”∗”) {

10 newse l f . CardType = ”?” ;
11 }
12 e l s e {
13 newse l f . CardType = e . s r c . min + ” . . ” + e . s r c . max ;
14 }
15
16 f o r (f in OptionalChi ldOf . a l l . s e l e c t (i | i . dst . name

= e . s r c . name)) {
17 var c : new Target ! C l a f e r ;
18 c .Name = f . s r c .Name ;
19 i f (newse l f . CardType = ”?”) {
20 c . Optional = true ;
21 }
22
23 i f (f . s r c . isTypeOf (Source ! Var iab le)) {
24 c . Type = f . s r c . Type ;
25 }
26
27 var n : new Target ! ClaferToParent ;
28 n . s r c = c ;
29 n . dst = newse l f ;

10

30
31 f . s r c . enumChildren (c) ;
32 }
33 }
34 }

In the code listing above, the group cardinalities that are children of a
VSpec are enumerated. The minimum and maximum cardinalities are used to
create the right Clafer parameter; 1..1 corresponds to ”xor”, 1..* corresponds
to ”or”, 0..* corresponds to that the clafer is optional and other cardinalities
are kept as is. After this has been determined and set in the group cardinality
parent’s clafer, child clafer are made in a similar way as the parent of the
group cardinality.

1 opera t i on Source ! VSpec enumConstraints (newse l f : Target
! C l a f e r) {

2 f o r (e in Parent . a l l . s e l e c t (i | i . dst . name = s e l f .
name)) {

3 i f (e . s r c . isTypeOf (Source ! ChoiceConstra int)) {
4 var c : new Target ! Constra int ;
5 c . Constra int = ”” ;
6
7 var f i r s t : Boolean = true ;
8
9 f o r (a in And . a l l . s e l e c t (i | i . s r c . name = e . s r c .

name)) {
10 i f (f i r s t) {
11 f i r s t = f a l s e ;
12 c . Constra int = a . dst .Name ;
13 }
14 e l s e {
15 c . Constra int = c . Constra int + ” && ” + a . dst .

Name ;
16 }
17 }
18
19 f o r (a in AndNot . a l l . s e l e c t (i | i . s r c . name = e .

s r c . name)) {
20 i f (f i r s t) {

11

21 f i r s t = f a l s e ;
22 c . Constra int = a . dst .Name ;
23 }
24 e l s e {
25 c . Constra int = c . Constra int + ” && ! ” + a . dst

.Name ;
26 }
27 }
28
29 var n : new Target ! Constra intToCla fer ;
30 n . s r c = c ;
31 n . dst = newse l f ;
32 }
33 e l s e i f (e . s r c . isTypeOf (Source ! ComparisonConstraint

)) {
34 var c : new Target ! Constra int ;
35 c . Constra int = ”” ;
36
37 f o r (a in LHS. a l l . s e l e c t (i | i . s r c . name = e . s r c .

name)) {
38 c . Constra int = a . dst .Name ;
39 }
40
41 c . Constra int = c . Constra int + ” ” + e . s r c .

Operator + ” ” ;
42
43 f o r (a in RHS. a l l . s e l e c t (i | i . s r c . name = e . s r c .

name)) {
44 c . Constra int = c . Constra int + a . dst .Name ;
45 }
46
47 var n : new Target ! Constra intToCla fer ;
48 n . s r c = c ;
49 n . dst = newse l f ;
50 }
51 }
52 }

12

In the code listing above, the constraints connected to a clafer are enu-
merated. For each constraint, the type is determined after which the other
connections to the constraint are enumerated and uses to build a constraint
string. This constraint string is set in the constraint node, such that it can
be inserted right away when the generation of the constraints is done. A link
between the clafer and the constraint is made.
2.6. Generation in metaDepth using EGL to Clafer

Now that there is a Clafer model in metaDepth, the next step is to gen-
erate the Clafer text from the Clafer model in metaDepth.

In the code listings that follow the EGL based generation is explained in
detail.

1 [% f o r (c in C la f e r . a l l . s e l e c t (x | x . IsRootElement =
true)) { %]

2 [%=c . p r i n t C l a f e r () %]
3 [%=c . enumChildren () %][% } %]

In the code listing above all the root clafers are enumerated, printed out
and their children are enumerated.

1 [%
2 @template
3 opera t i on C la f e r enumChildren () {
4 f o r (cp in ClaferToParent . a l l . s e l e c t (x | x . dst

= s e l f)) {
5 %][%=cp . s r c . p r i n t C l a f e r () %]
6 [%=cp . s r c . enumChildren () %]
7 [%
8 }
9 f o r (cc in Constra intToCla fer . a l l . s e l e c t (x | x .

dst = s e l f)) {
10 %][[%=cc . s r c . Constra int %]][%=”\n”

%][%
11 }
12 }

In the code listing above both the child clafers and the child constraints of
a parent clafer are enumerated. The child clafers are enumerated recursively.

1 @template
2 opera t i on C la f e r p r i n t C l a f e r () {

13

3 %][%= s e l f . printCardType () %][%= s e l f .Name %][%=
s e l f . printType () %][%= s e l f . p r in tOpt iona l ()
%][%

4 }

In the code listing above the clafer’s cardinality, name, type definition
and whether it is optional is printed out.

1 @template
2 opera t i on C la f e r printCardType () {
3 i f (s e l f . CardType <> ”?” and s e l f . CardType <>

””) {
4 var l i t e r a l P o s t f i x : S t r ing = ” ” ;
5 %][%= s e l f . CardType %][%= l i t e r a l P o s t f i x

%][%
6 }
7 }
8
9 @template

10 opera t i on C la f e r pr in tOpt iona l () {
11 i f (s e l f . Optional = true) {
12 %]?[%
13 }
14 }
15
16 @template
17 opera t i on C la f e r printType () {
18 i f (s e l f . Type <> ””) {
19 var l i t e r a l P r e f i x : S t r ing = ” : ” ;
20 %][%= l i t e r a l P r e f i x %][%= s e l f . Type%][%
21 }
22 }
23 %]

In the code listing above the textual syntax to be printed for the cardi-
nality, optional ”?” and type definiton are implemented.

14

3. Example

In figure 9 a CVL model in AToMPM that features all the implemented
CVL and Clafer features can be seen.

Figure 9: An example RPGGame of CVL in AToMPM.

When using the transformation steps outlined in this paper on this ex-
ample CVL model in AToMPM, the following expected Clafer textual repre-
sentation is obtained:

1 RPGGame
2 Story
3
4 xor Player s
5 S i n g l e p l a y e r
6 Name? : S t r ing
7
8 Mult ip layer
9 Min : In t e g e r

10
11 Max : I n t e g e r
12
13 [Min <= Max]
14
15 1 . . 2 Enemies

15

16 V i l l a i n
17
18 Dragon
19
20 D i f f i c u l t y : Float
21
22 or Environment?
23 Door
24
25 Goal
26
27 Key
28
29 Trap
30
31 [Key && Door && ! Trap]

4. Verification

As the Clafer Compiler uses a transformation in the other direction to
visualize a Clafer model by producing a CVL model in a DOT file; the
transformation can be verified by transforming the concise syntax of Clafer
that the transformation produced back to CVL, then do a visual comparison
of both. They should have the same structure to pass verification.

The commands used to turn a Clafer.cfr file into a CVL.png figure are:

clafer -m=cvlGraph Clafer.cfr

dot -Tpng -o CVL.png Clafer.cvl.dot

In figure 10 a CVL model that is tranformed from the example Clafer
textual representation result can be seen. Apart from a bug with the con-
straint mapping onto a single node, it looks similar enough. In other words,
the transformation example passes the verification.

5. Conclusion

A common subset of features between CVL and Clafer exists that is large
enough for a successful transformation of a large set of CVL models to Clafer.

16

Figure 10: Verification by using the Clafer Compiler to transform the example RPGGame
from Clafer back to CVL.

6. Future work

Future work could study the similarities and differences of the instan-
tiation of CVL and Clafer, such that the variation points of CVL can be
transformed to similar concepts (for example, an attempt to express it as
constraint syntax) or methods (for example, an attempt at manipulating the
instance generator) in Clafer.

CVL constraints (which are OCL based) and Clafer constraints (which
are Alloy based) could be studied and compared in order to create a more
complete transformation from CVL constraints to Clafer constraints.

Both these future work suggestions could be seen as projects on their own;
because of this project’s scope, they were limited or left out of this project.

7. Files

7.1. Requirements

For generation and transformation metaDepth 2.0 is required, metaDepth.jar
needs to put in the metaDepth folder.

For the transformation in the reverse direction from Clafer to CVL, Clafer
Tools 0.4.0 is required, as well as ”dot” from Graphviz with PNG support.

7.2. Contents

7.2.1. AToMPM

• Formalisms/CVL: The abstract syntax and concrete visual syntax
metamodel files.

• Models/CVL: Example models: CVL was used during development,
RPGGame is the final example.

17

7.2.2. metaDepth

The following files are the intermediary steps and results of the transfor-
mation and generation:

• CVLMM.mdepth: The exported CVL metamodel in metaDepth.

• CVL.mdepth: The exported RPGGame CVL model which uses CVLMM
in metaDepth.

• ClaferMM.mdepth: A Clafer metamodel made in metaDepth.

• Clafer empty.mdepth: An empty Clafer model which uses ClaferMM
in metaDepth.

• CVL2Clafer transformation.etl: An ETL transformation from CVL
to Clafer in metaDepth.

• Clafer.mdepth: The transformed Clafer model in metaDepth.

• Clafer generation.egl: An EGL generation from Clafer in metaDepth
to Clafer in its textual representation.

• Clafer.cfr: The resulting Clafer textual representation.

The following files support running the transformation and generation:

• CVL2Clafer cmdlist: Runs the metaDepth instructions to do the
ETL transformation.

• Clafer main.egl: Main file that runs the EGL generation.

• Clafer cmdlist: Runs the metaDepth instructions to do the EGL
generation.

• run.bat: Runs the transformation and the generation; as an interme-
diary step, Clafer.mdepth is corrected to be further processed.

7.3. Execution

The transformation and generation can be done by running run.bat.

8. Bibliography

Wijsman, T., 2014. Introduction to a CVL to Clafer transformation project.

18

