
Textual languages with Xtext1

Fedor Biryukov

University of Antwerp

Abstract

Keywords: Modeling, Xtext, RAMification2

1. Introduction

In his lections [1], Vangheluwe pays a lot of attention to visual concrete syntax and
it is almost asserted that domain-specific modeling is done in either visual or hybrid
manner. While I am convinced that visual modelling has a lot of advantages and far
more expressive power [2] (shape, color etc.), I am eager to investigate textual languages
as well.

In section 2 I give the requirements for the (family of) railway formalism(s). In
section 3 I develop one such formalism with Xtext. In section 4 I model a formalism to
specify railway patterns. In section 5 I build upon section 4 and introduce a notion of
“action rule” that consists of a railway pattern and an executable action. In section 6 I
show by example how action rules can be used to animate a railway system. In section 7
I describe the main contribution of this paper, namely, how the RAMification2 is done.
In section 8 I provide my conclusions and ideas for future work.

2. The family of railway formalisms

A railway system consists of a set of interconnected segments(straights, stations,
turnouts and junctions), a set of trains and a set of schedules.

Straights and stations have one input and one output. Each station has a unique
name and must be connected to at least one other segment. Turnouts have one input
and two outputs. Junctions - vice versa. At the end of each segment there is a light
which is either green or red. Each train has a unique identifier and a schedule(start
station, end station and an instruction for each turnout). Turnouts and junctions have
two modes: straight and diverging. While undesirable at run-time, the formalism should
allow for more than one train to be present on a railway segment.

There are other restrictions that should be checked during the validation of a railway
system. But these are less relevant to the work I present here. So, I take the liberty to
leave them out of consideration.

1https://eclipse.org/Xtext/
2RAMify is a shorthand for Reduce, Augment, Modify.
Email address: fedor.biryukov@student.uantwerpen.be (Fedor Biryukov)

https://eclipse.org/Xtext/

Railway ≡< Segments, Trains, Schedules >

Segments = Stations ∪ Straights ∪ Turnouts ∪ Junctions

Station ⊂ AllowedNames× Segments× Segments× Trains× Lights

Lights = {RED,GREEN}

Figure 1: Formal specification of a railway system model (excerpt)

Figure 2: Sample railway system

3. “Railway model” language

My primary interest is to construct a textual language (or two). More specifically, a
textual concrete syntax for a DSML from the family of railway formalisms. For example,
I would like to write the following to specify the railway system from Figure 2.

ra i lway RailwaySystem

// Segments
s t a t i o n Antwerp (; fromAtoBC)
turnout fromAtoBC (Antwerp ; Brusse l s , Char l e ro i)
s t a t i o n Bru s s e l s (fromAtoBC ; fromBCtoD)
s t a t i o n Char l e ro i (fromAtoBC ; fromBCtoD)
junc t i on fromBCtoD (Brusse l s , Char l e ro i ; Doel)
s t a t i o n Doel (fromBCtoD ; Ekeren)
s t a t i o n Ekeren (Doel ; Frankfurt)
s t a t i o n Frankfurt (Ekeren ;)

// Trains
t r a i n T0001
t r a i n T0002
t r a i n T0003

// Schedu les
schedu le S1 T0001 (Antwerp ; Doel)
s chedu le S2 T0002 (Char l e ro i ; Ekeren) STRAIGHT
schedu le S3 T0003 (Frankfurt ; Antwerp)

Listing 1: Sample railway system in RML

The Xtext grammar for this language includes enough information for both concrete
and abstract syntax of the formalism. At the same time it is very concise. And if you

2

take a look at the formal specification in Figure 2 and at the grammar in Listing 2 you
will notice the how similar they are.

grammar rml .RML with org . e c l i p s e . xtext . common . Terminals

generate rml ”http ://www.RML. rml”

Model :
’ ra i lway ’ name=ID (segments+=Segment | s chedu l e s+=Schedule |

t r a i n s+=Train) ∗ ;

Segment :
S ta t i on | St ra i gh t | Turnout | Junct ion ;

S ta t i on :
’ s t a t i o n ’ name=ID ’ (’ in=[Segment] ? ’ ; ’ out=[Segment] ? ’) ’
(t r a i n s+=[Train] ’ , ’ ?) ∗ l i g h t=Light ? ;

S t r a i gh t :
’ s t r a i g h t ’ name=ID ’ (’ in=[Segment] ’ ; ’ out=[Segment] ’) ’
(t r a i n s+=[Train] ’ , ’ ?) ∗ l i g h t=Light ? ;

Turnout :
’ turnout ’ name=ID ’ (’ in=[Segment] ’ ; ’ out1=[Segment] ’ , ’

out2=[Segment] ’) ’
(t r a i n s+=[Train] ’ , ’ ?) ∗ l i g h t=Light ? mode=Mode? ;

Junct ion :
’ j unc t i on ’ name=ID ’ (’ in1=[Segment] ’ , ’ in2=[Segment] ’ ; ’

out=[Segment] ’) ’
(t r a i n s+=[Train] ’ , ’ ?) ∗ l i g h t=Light ? mode=Mode? ;

Train :
’ t r a i n ’ name=ID (segment=[Segment]) ? ;

enum Light :
RED | GREEN;

enum Mode :
STRAIGHT | DIVERGING;

Schedule :
’ s chedu le ’ name=ID t r a i n =[Train] ’ (’ s t a r t =[Sta t i on] ’ ; ’ end

=[Stat i on] ’) ’
(turnoutModes+=Mode ’ , ’ ?) ∗ ;

Listing 2: Xtext grammar of the RML formalism

Regarding the semantics of RML: from RML you can generate Xtend code(from which
Java code is produced). Xtend code can output its state in RML, ensuring you can do
the translation in both directions.

3

4. “Railway pattern” language

The first question here is: “What should a patter look like?”
If we want to match all stations, saying “station s” should be enough. However, you

may want to find a station with a train on it(station has a reference to the train) or a
station with a green light(value of light attribute is GREEN). In general, you should be
able to restrict the selection based on the value of some attribute or on the references/links
between different objects.

Consider the following example in which we look for a train that has a green light
and may advance from the station it is currently at to the next one. We have a train(t),
two stations(a and b) and references/links between them. We leave open what their
names(and some other properties) are. However, we impose a restriction on the value of
attribute light. It is implemented as a string which must contain valid Xtend code.

t r a i n t {
name :
segment : a

}
s t a t i o n a {

name :
t r a i n s : t
l i g h t : ’ i t==Light .GREEN’
in :
out : b

}
s t a t i o n b {

name :
t r a i n s : t
l i g h t :
in : a
out :

}

Listing 3: Sample railway system pattern in RPL

5. RPL action rules

Now that we can find things, let us also define the actions we want to execute.
Consider the following example in which we move a train that has a green light from
the segment it is currently on to the next one. Base class Segment does not contain
any references to the other segments. So, we cannot say in the pattern that they are
connected. But we can check it in the post-action that we introduce.

r u l e moveTrains
pre {

t r a i n t {
name :
segment : a

}
segment a {

4

matchSubclasses : true
name :
t r a i n s : t
l i g h t : ’ i t==Light .GREEN’

}
segment b {

matchSubclasses : true
name :
t r a i n s :
l i g h t :

}
}
post <<<

i f (b . t r a i n == null && a . isConnectedTo (b))
t .moveTo(b)

>>>

Listing 4: Sample railway system action rule in (the second version of) RPL

Regarding the semantics of RPL. There is no automatic code generator yet. However,
the above rule should produce code that is equivalent to the following.

de f stat ic RailwaySystem moveTrains (RailwaySystem i t) {
for (Train t : t r a i n s) {

i f (t . segment != null) {
var a = t . segment
i f (a . t r a i n == t && [i t==Light .GREEN] . apply (a . l i g h t)) {

for (Segment b : segments) {
i f (b . t r a i n == null && a . isConnectedTo (b))

t .moveTo(b)
}

}
}

}
return i t

}

Listing 5: Sample railway system action rule, translated to Xtend

6. Experimentation

Imagine a model similar to that in Listing 1 with all lights set to green and only
one train, T0001, which is in Antwerp. Xtend code automatically generated from such
a (RML) model, augmented with the manually translated moveTrains rule from the
previous section and the following main function would produce a trace with 7 snapshots
in it, i.e. the train would move all the way from Antwerp to Frankfurt.

de f stat ic void main (St r ing [] a rgs) {
var r s = new RailwaySystem
var prevSnapshot = ””
var i = 0

5

while (prevSnapshot != r s . t oS t r i ng) {
prevSnapshot = r s . t oS t r i ng
// output current s t a t e
i++
p r i n t l n (’−−−−−SNAPSHOT#’+i+’−−−−−−−−−−−−−−−−−−−− ’)
p r i n t l n (prevSnapshot)
// perform trans format ion r u l e s
r s . moveTrains

}
}

Listing 6: Sample railway system action rule, translated to Xtend

7. Automatic RAMification

I provide a RAMifier that takes an Ecore meta-model(abstract syntax) as input and
produces a Xtext grammar and templates.xml(predefined code templates for the gener-
ated language), based on the principles outlined in sections 4 and 5. You can find the
RAMifier in rml/src/ram/RAM.xtend, its main function shows how to use it. In this
section I will explain how it works on a higher level of abstraction.

The start rule of the input grammar is removed and the following rules are added:

Model :
r u l e s+=Rule ∗ ;

Rule :
’ r u l e ’ name=ID pre=Pre post=Post ;

Pre :
{Pre} ’ pre ’ ’ { ’ (segments+=Segment | t r a i n s+=Train | s chedu l e s+=

Schedule) ∗ ’ } ’ ;
Post :

’ post ’ body=TEXT;
te rmina l TEXT: ’<<< ’ −> ’>>> ’ ;

Rule Model is the start rule of the output grammar. Rule Pre here is the one generated
for the Railway Model Language given in listing 2. It has three rule calls(Segment, Train
and Schedule) because there are three “root classes” in the input Ecore meta-model, i.e.
three classes that are not derived from any other class.

For each class in the input Ecore meta-model (except the one corresponding to the
start rule) I create a separate rule in the output grammar. E.g., consider EClass Train
that has an EAttribute name and an EReference segment. For this class the following
rule is produced:

Train :
’ t r a i n ’ name=ID ’ { ’

’name ’ ’ : ’ nameExpr=STRING?
’ segment ’ ’ : ’ segment=[Segment] ?

’ } ’ ;

As you can see, the rule has the same name as the EClass. For each attribute an
“expression attribute” of type EString is created. You are supposed to write valid Xtend
code there that returns a boolean value. This way you can filter matched objects based

6

on the value of each attribute. For each EReference a new EReference is created and the
cardinalities are preserved. This way you can specify connections between objects. If the
class is derived, it inherits all members(attributes and references) of the super class.

Super classes are handled in a slightly different way: I create two rules in the output
grammar for each of them. One rule to represent the hierarchy. The other - to provide an
implementation for the super class. Moreover, each super class gets an extra EAttribute
to specify whether its subclasses are to be matched. Consider the following example:

Segment :
SegmentImpl | Stat i on | St ra i gh t | Turnout | Junct ion ;

SegmentImpl :
’ segment ’ name=ID ’ { ’

’ matchSubclasses ’ ’ : ’ matchSubclasses=(’ t rue ’ | ’ f a l s e ’)
’name ’ ’ : ’ nameExpr=STRING?
’ t r a i n s ’ ’ : ’ (t r a i n s+=[Train] ’ , ’ ?) ∗
’ l i g h t ’ ’ : ’ l i ghtExpr=STRING?

’ } ’ ;

All this is done by the XtextGenerator. You can find it in the ram package.

8. Conclusion and future work

Xtext is a fascinating framework. It makes engineering a DSL and developing an IDE
for it easy, as never before, by combining a number of tools, such as:

(EMF) Ecore – a meta-model for describing models.

By default, the ecore model is auto-generated from the grammar. This makes in-
consistencies between the abstract and the concrete syntax impossible and shortens
development time.

A reason why using Ecore for the abstract syntax is wise is that this format is
shared by the multitude of tools available in the Eclipse Modeling Framework. For
example, it should be possible to develop a visual formalism based on it.

ANTLR – ANother Tool for Language Recognition.

ANTLR is used for the lexical analysis, parsing and code generation. Xtext builds
upon ANTLR and introduces a lot of extra features that bring these three aspects
of DSL engineering to a new level. Xtext grammars and code generators are very
concise. I would even say that Xtend makes code generation a feast.

Google Guice – generic framework for dependency injection using annotations.

Guice allows you to customize almost every aspect of your language.

Regarding the future work, there is room for improvement in at least two directions:

1. Further improving the RAMifier

2. Using Xbase

7

Ideally, the RAMifier should generate not only the grammar and templates, but also
the validator, code generator/type inferrer, and even tests.

I have not used Xbase in any of the formalisms I provide. However, I think it would be
a very good idea to infer Java types for each model element and to use Xbase expressions
(instead of opaque strings) at some strategic places, such as the conditional expressions
and the action code in the pattern language. It would allow for code analysis, i.e. better
feedback, instant error messages and “free” code generation.

After all, I do not claim that the pattern language provided here is perfect. I am even
sure that a far better one can be conceived.

References

[1] Model driven engineering, http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/, accessed:
2015-12-11.

[2] D. L. Moody, The ”physics” of notations: Toward a scientific basis for constructing visual notations
in software engineering, IEEE Transactions on Software Engineering 35 (6) (2009) 756–779. doi:

http://doi.ieeecomputersociety.org/10.1109/TSE.2009.67.

8

http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2009.67
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2009.67

	Introduction
	The family of railway formalisms
	``Railway model'' language
	``Railway pattern'' language
	RPL action rules
	Experimentation
	Automatic RAMification
	Conclusion and future work

