Textual languages with Xtext

Fedor Biryukov

University of Antwerp

Abstract

Keywords: Modeling, Xtext, DSL, AToMPM, metaDepth

1. Introduction

In his lections [I], Vangheluwe pays a lot of attention to visual concrete syntax and
it is almost asserted that domain-specific modeling is done in either visual or hybrid
manner. While I am convinced that visual modelling has a lot of advantages and far
more expressive power (shape, color etc.) [2], I am eager to investigate textual languages
as well.

In the sequel I introduce the tools, the case study and the work I am planning to do.

2. Tools

2.1. AToMPM

Throughout the course [I] we used AToMPM a lot. AToMPM |[3] stands for “A Tool
for Multi-Paradigm Modeling”. It is a research framework for designing DSML envi-
ronements, performing model transformations, and manipulating and managing models.
It runs completely over the web and follows the philosophy of modeling everything ex-
plicitly, at the right level of abstraction(s), using the most appropriate formalism(s) and
process(es), being completely modeled by itself.

In AToMPM we used a number of visual formalisms:

e SimpleClassDiagrams-formalism to specify the abstract syntax of a language,
e ConcreteSyntax-formalism (for concrete syntax),
e TransformationRule-formalism to specify model transformation rules and

. MoTifE| [4] to combine these rules into programs.

Email address: fedor.biryukov@student.uantwerpen.be (Fedor Biryukov)
IMoTif is an acronym for the Modular Timed graph transformation formalism.

2.2. Xtext

Xtext [B] is a framework for development of programming and domain-specific lan-
guages. With Xtext you define your language using a powerful grammar language. As
a result you get a full infrastructure, including parser, linker, typechecker, compiler as
well as editing support for Eclipse, IntelliJ IDEA and your favorite web browser.

In Xtext, every language’s concrete syntax is defined by a grammar and every abstract
syntax is defined by an Ecore model. Xtext can automatically derive the Ecore model
from a grammar or import an existing Ecore model. It can be said that the grammar
mixes both concrete and abstract syntax definition and you may have your concerns
about this. However, Eysholdt [6] reports that it proved to be very productive to start
with a derived Ecore model and to stop regenerating it as soon as the language’s abstract
syntax is stable.

3. Case study

I will reconsider the railway system case study used throughout the course [I]. We
have already solved it in metaDepth and in AToMPM. This time I will use Xtext (and
possibly some other tools). Afterwards I will compare all these different approaches.

To be more concrete, I will develop a grammar for the Railways formalism and a
grammar for the Schedules formalism. I will also look for a way to model the operational
semantics.

Table 1: means to define the formalism syntax in different tools

Syntax AToMPM metaDepth Xtext

Abstract | SimpleClassDiagrams model | metaDepth model Ecore model

Concrete | ConcreteSyntax model default, cannot redefine | Xtext grammar
References

[1] Model driven engineering, http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/, accessed:
2015-12-11.

[2] D. L. Moody, The ”physics” of notations: Toward a scientific basis for constructing visual notations
in software engineering, IEEE Transactions on Software Engineering 35 (6) (2009) 756-779. doi:
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.67.

[3] Atompm, http://www-ens.iro.umontreal.ca/~syriani/atompm/atompm.htm, accessed: 2015-12-11.
[4] E. Syriani, H. Vangheluwe, |A modular timed graph transformation language for simulation-based
design, Software & Systems Modeling 12 (2) (2013) 387-414. doi:10.1007/s10270-011-0205-0,

URL http://dx.doi.org/10.1007/s10270-011-0205-0

[5] Xtext framework, https://eclipse.org/Xtext/, accessed: 2015-12-11.

[6] M. Eysholdt, J. Rupprecht, Migrating a large modeling environment from xml/uml to xtext/gmf,
in: Proceedings of the ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, OOPSLA ’10, ACM, New York, NY, USA, 2010,
pp. 97-104. doi:10.1145/1869542.1869559.

URL http://doi.acm.org/10.1145/1869542.1869559

http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2009.67
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2009.67
http://www-ens.iro.umontreal.ca/~syriani/atompm/atompm.htm
http://dx.doi.org/10.1007/s10270-011-0205-0
http://dx.doi.org/10.1007/s10270-011-0205-0
http://dx.doi.org/10.1007/s10270-011-0205-0
http://dx.doi.org/10.1007/s10270-011-0205-0
https://eclipse.org/Xtext/
http://doi.acm.org/10.1145/1869542.1869559
http://dx.doi.org/10.1145/1869542.1869559
http://doi.acm.org/10.1145/1869542.1869559

	Introduction
	Tools
	AToMPM
	Xtext

	Case study

