MDE Project report:
Mutation-based testing of model transformations

Joran Dox?

“University of Antwerp

Abstract

To ensure the quality of software, it needs to be tested. Of course, the used test suite requires
testing in itself. In mutation-based testing, this testing suite is tested with injecting common
mistakes into the software, and checking whether those are found in the tests. In the context of
Model Driven Engineering, testing model transformations is done by mutating the transformation
model through the use of Higher-Order Transformations.

Keywords: testing, mutation, mutation-based testing, Model Driven Engineering, Higher-Order
transformations, model transformations, metatesting

1. Introduction
“Quis custodiet ipsos custodes?” - Juvenal, Satire VI

In software engineering, testing the software is an integral part of the development process.
It then follows that this testing suite should itself be tested too. One way of testing this is with
the use of mutation-based testing. This technique entails changing the software in ways that
resemble common errors, and checking whether the testing suite can differentiate between the
mutations and the original software.

In Model Driven Engineering (MDE), model transformations are used to transform models,
much like in classic software engineering the software transforms the data. Applying mutation-
based testing to model transformations would then mean transforming the original transforma-
tion with common errors, before running the test suite. The transformations applied to these
transformations are called Higher-Order Transformations (HOT).

In this paper, these concepts are explained a little more in-depth, based on reading from the
papers cited. The proposed mutation operators are also explored with AToOMPM[1].

2. Reading

2.1. Mutation-Based Testing

The concept of mutation-based testing was first explored in classic software engineering as a
way to test a test suite [2]. This approach takes the source code of a program and changes small
things. To be effective, the changes made should reflect common mistakes:

Email address: joran.dox@student.uantwerpen.be (Joran Dox)

1

add / subtract 1 from integer constants

change * to /

change TRUE to FALSE

delete a statement

The resulting source code, assuming it compiles, is then run through the test suite. If the test
suite does not find the program faulty, then either a new test should be added to address this
(faulty test suite) or the mutation was ineffective for some reason (e.g. dead code or redundant
checks).

results
of p

insert the | mutation

@ operators W

4_____s_uparfs;s_the_e_q_ui_veh;I_lt_rr_lu.ten_ti ____________ ,

improve the test dataset

In this graph, courtesy of [3], P is the program to be tested, the testing suite is in the form of
the test data (input) and the oracle, which “kills” the detected mutants. Any mutants left over
that are not equivalent to P are then used to improve the test dataset.

2.2. Model Transformations and Higher-Order Transformations

In Model-Driven development, we can draw a parallel between the input/output of a program
and a model, and between software and model transformations. It then follows that software
taking software as input and producing mutated software as output, has its equivalent in model
transformations applying to model transformations. This kind of meta-transformations are called
Higher-Order Transformations [4].

2.3. Mutation-based Testing of Model Transformations

When applying the concept of mutation-based testing to MDE, one problem arises immedi-
ately: what mutations should be created to reflect real-life situations? Common mistakes in
classical programming are not necessarily common mistakes in MDE. [3] defines following cat-
egories:

e navigation: the model is navigated thanks to the relations defined on its input/output meta-
models, and a set of elements is obtained.

e filtering: after a navigation, a set of elements is available, but a treatment may be applied
only on a subset of this set. The selection of this subset is done according to a filtering
property.

e output model creation: output model elements are created from extracted element(s).
2

o input model creation: when the output model is a modification of the input model, elements
are created, deleted or modified.

Across these categories, 10 mutation operators are defined for a model transformation context.
The list can be found in full detail in paper [3], and is explained further in this paper in section 3.3.

2.4. Conclusion

Mutation-based testing is a great way to ensure the reliability of a test suite in classic software
engineering. It also holds potential to be applied in Model-based development. Implementing
a mutation-based meta-testing suite in ATOMPM [1] would be an asset to the MDE community,
and exploring this will be my goal in the following project.

3. Project

3.1. AToMPM

AToMPM stands for “A Tool for Multi-Paradigm Modeling”. It is a research framework
from which you can generate domain-specific modeling web-based tools that run on the cloud.
AToMPM is an open-source framework for designing DSML environements, performing model
transformations, and manipulating and managing models. It runs completely over the web, mak-
ing it independent from any operating system, platform, or device it may execute on. AToMPM
follows the philosophy of modeling everything explicitly, at the right level of abstraction(s), using
the most appropriate formalism(s) and process(es), being completely modeled by itself.[5]

For this project, a modified version of AToMPM is used. The most important difference is that
Higher Order Transformations are supported. To make them possible, an explicit RAMification
transformation is created.

As a quick refresher: RAMification stands for Relax, Augment and Modify; three actions
which need to be applied to a metamodel to create a pattern metamodel which can be used to
create model transformations. Relaxing constraints like minimum cardinalities, augmenting the
metamodel with labels and a concrete syntax for abstract classes, and modifying attributes to
enable filtering based on the model’s attributes.

This RAMification transformation is used as follows: to ramify a formalism, both the
metamodel and concrete syntax are loaded alongside each other, after which the trans-
formation is run. The result is saved under formalism.ramified.model and then com-
piled with the regular CompileMenu toolbar into formalism.ramified.metamodel and formal-
ism.ramified.defaultlcons.metamodel. These can be used exactly like the .pattern metamodels
used in the current version of AToOMPM, as they are also one level of RAMification. To apply an-
other level of ramification, treat the formalism.ramified.model as the initial metamodel and apply
the RAMification transformation again, saving the result as formalism.ramified.ramified.model.
This can then again be compiled to a metamodel and concrete syntax.

3.2. Preparation and initial troubles

As is often the case with research software (and an experimental version of it no less), the
initial stage of development of this project was hindered a lot through bugs, some of which
were very hard to track down, let alone fix. A particularly nasty one was apparently related to
localisation in Windows.

3

Another problem is the fact mutation-based testing is intended to improve a test suite, which
currently does not exist for ATOMPM. As such, while the transformations themselves may work,
no experimental data can be gathered about the fitness for that purpose.

Inside of the modified AToMPM client, more had to be done to be able to use the HOTS. First
of all, the “TransformationRule” formalism had to be RAMified itself, using the newly provided
transformation. Next, any rule you wish to transform through HOTSs needs to be modelled in the
created .ramified metamodels, instead of using the existing .pattern versions. This is because
the metamodels need to be ramified once per level of Higher Order, (in this case two), and
.ramified and .pattern metamodels don’t work together. Luckily the conversion from the existing
.pattern-based transformation rules to .ramified versions is as simple as replacing the mentioned
metamodels in the files, as both are functionally the same.

At this point we can start creating Higher Order Transformations using TransformationRule,
TransformationRule.ramified and formalism.ramified.ramified.

3.3. Mutant Operators

The following Mutator Operators will be explained using the TrainSystem formalism used in
the practice sessions of the MDE course[6] when appropriate. For brevity, the abbreviations Left
Hand Side (LHS) and Right Hand Side (RHS) will be used for the before and after sides of a
transformation respectively.

3.3.1. Navigation

In this section, the navigation part of the transformation is mutated. In AToMPM, this relates
to changing the objects in the LHS, or the relations between them.

e Relation to the same class change (RSCC): This operator replaces the navigation of one
association towards a class with the navigation of another association to the same class
(when the metamodel allows it).[7]

In this transformationrule, the train moves to the segment connected to the diverging link of
the turnout. After applying the mutation, this diverging link is replaced with a straight link,
resulting in a train moving straight although the turnout’s direction is set to diverging. For
a test suite to detect this, a generic test on a big network comparing expected end stations
with real end stations would be sufficient.

Mutator:

Before:

1"
1
@

__PpSegmentlcon

After:

__pSegmenticon

e Relation to another class change (ROCC): This operator replaces the navigation of an
association towards a class with the navigation of another association to another class.[7]

In this transformationrule, a train is placed on the correct starting station, severing the con-
nection with a previous station it might be on. The mutator replaces this previous station
with a regular straight however. Any test starting with a train on a wrong station will show
that this rule doesn’t work correctly anymore.

Mutator:

Before:

e Relation sequence modification with deletion (RSMD): During the navigation, the transfor-
mation can navigate many relations successively. This operator removes the last step off
from the composed navigation.[7]

6

This rule moves a train from his turnout, set to diverging, to the junction it is connected to.
Changing this rule moves a train from anywhere to a junction, invalidating many checks
along the way. This resulting rule would probably not qualify as "compilable” and as such
the mutant is killed before any testing needs to be done. This is partly due to the absence of
pivot elements, which would cause a new turnout to be created on the RHS if it is removed
on the LHS.

Mutator:

Before:

After:

e Relation sequence modification with addition (RSMA): This operator does the opposite of
RSMD. The number of mutants created depends on the number of outgoing relations of the
class obtained with the original transformation.[7]

In this rule, the light of a segment the train is on is set to green, after some safety checks.
The mutation adds a random green light to be matched somewhere, which should not matter
in any network, since the already-matched junction should have a light on it anyway. As
such, this is an example of a mutation which is equivalent to the original.

Mutator:

Before:

' Q H
e s eceasaS No-
! : 13
] i 2 po 13
; : —pSsomentcon e
After
.....................................
TR .
8 8

3.3.2. Filtering

In this section, the filtering part of the transformation is mutated. In AToMPM, this relates to
changing the filters on the attributes of the objects and relations in the LHS.

e Collection filtering change with perturbation (CFCP): This operator aims at modifying an
existing filtering, by influencing its parameters. One criterion could be a property of a class
or the type of a class; this operator will disturb this criterion.[7]

This rule, the same one as in the RSMD section, moves a train from his turnout, diverging,
to a junction. The mutated version however, changes this diverging property and turns it
straight, causing trains to do the opposite of the turnout’s setting and diverge when the
setting is straight. This mutation is again simple to detect with a test checking the correct
end stations of the trains, assuming the test network lets the situation presents itself.

Mutator:

Before and after look the same:

o Collection filtering change with deletion (CFCD): This operator deletes a filter on a collec-
tion; the mutant returns the collection it was supposed to filter.[7]

Again in the same rule, we can remove the filtering on direction entirely, resulting in trains
always diverging on turnouts followed by junctions. Likewise, this mutant can be detected
with an appropriate simulation.

Mutator:
10

Before and after look the same:

e Collection filtering change with addition (CFCA): This operator does the opposite of
CFCD. It uses a collection and processes a useless filtering on it.[7]

In this rule, the same one as in the ROCC section, the train is moved from his original
(wrong) station to the correct starting station according to its schedule. The mutator changes
the name filter on one of the stations in the LHS to require its name to be ”Antwerp”.
Evidently in most cases this rule will not find a match, and as such fail to run. Any test with
random station names should detect that something is wrong and kill the mutant.

Mutator:
11

<coded> <poded>
F g ——

L R . 5 P . S s A o -

3.3.3. Creation

In this section, the creation part of the transformation is mutated. In AToOMPM, this relates to
changing the objects and relations in the RHS of the transformation.

Currently this part of the Higher Order Transformations does not work properly, and the fol-
lowing mutations are hypothetical:

o Class compatible creation replacement (CCCR): This operator replaces the creation of an
object by the creation of an object of a compatible type. It could be an instance of a child
class, of a parent class or of a class with a common parent.[7]

Strictly speaking the objects in the RHS are only created if they were not present in the LHS,
but as this situation does not happen in the Trainsystem formalism, the broader interpretation
of any object present in the RHS is used here. In this rule, the train moved from his current
segment to the next one, given that the light is green. The mutator replaces a segment by
a straight. As a result, the train transforms all segments it passes into straights, violating
various constraints along the way. As such, this mutation would once again be found by any
test that triggers the change.
12

Mutator:

6

—pSegmenticon ‘"1_ =
Jcods
___pSegmenticon
10
8 3 o
==
__pSegmenticon

pSegmenticon

o Classes association creation deletion (CACD): This operator deletes the creation of an
association between two instances.|[7]

In the same rule, this mutator removes the link between the two segments, causing sub-
sequent trains arriving there to stop seemingly without a reason. This one would violate
minimum cardinalities unless it happens to sever a link between two stations.

Mutator:
L3 >
g 5
Before:
pSed > nticon
6 -]
REE
__ pSegmenticon

After:
14

4.

nticon

—pSedmmertioan A

__ pSegmenticon

e Classes association creation addition (CACA): This operator adds a useless creation of a
relation between two class instances of the output model, when the metamodel allows it.[7]

The used railway metamodel does not allow extra relations to be created in any way apart
from connecting two completely separate railroad networks end-to-end. In any other case
the cardinalities and/or other constraints would be violated.

Conclusion

As has been shown so often, testing is important, important enough to warrant being tested

itself. In a model-driven environment, this is still true. In this project I explored the application

of

Higher Order Transformations in AToMPM for this goal. While I did not succeed to create a

complete metatesting suite, I believe I have shown the potential this approach has with adequate
examples.

References

(1
(2]

[3]
[4]

(51
(6]
(7]

E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, H. Ergin, Atompm: A web-based modeling
environment., in: Demos/Posters/StudentResearch@ MoDELS, 2013, pp. 21-25.

J. Andrews, L. Briand, Y. Labiche, Is mutation an appropriate tool for testing experiments? [software testing],
in: Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, 2005, pp. 402—411.
doi:10.1109/ICSE.2005.1553583.

Mutation analysis testing for model transformations, in: A. Rensink, J. Warmer (Eds.), Model Driven Architecture
Foundations and Applications, Vol. 4066 of Lecture Notes in Computer Science, 2006. doi:10.1007/11787044_28.
On the use of higher-order model transformations, in: R. Paige, A. Hartman, A. Rensink (Eds.), Model Driven Ar-
chitecture - Foundations and Applications, Vol. 5562 of Lecture Notes in Computer Science, 2009. doi:10.1007/978-
3-642-02674-4.3.

E. Syriani, H. Vangheluwe, AToMPM, [Online; accessed 21-January-2016,
http://www-ens.iro.umontreal.ca/ syriani/atompm/atompm.htm] (2016).
H. Vangheluwe, Model Driven Engineering, [Online; accessed 21-January-2016,

http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/] (2016).

A. Parsai, Mutation-based testing of model transformations (using hot), [Online; accessed 10-December-
2015, http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/201314/projects/Ali.Parsai/]
(2013).

15

