MDE Reading report:
Mutation-based testing of model transformations

Joran Dox?

“University of Antwerp

Abstract

To ensure the quality of software, it needs to be tested. Of course, the used test suite requires
testing in itself. In mutation-based testing, this testing suite is tested with injecting common
mistakes into the software, and checking whether those are found in the tests. In the context of
Model Driven Engineering, testing model transformations is done by mutating the transformation
model through the use of Higher-Order Transformations.

Keywords: testing, mutation, mutation-based testing, Model Driven Engineering, Higher-Order
transformations, model transformations, metatesting

1. Introduction

“Quis custodiet ipsos custodes?” - Juvenal, Satire VI

In software engineering, testing the software is an integral part of the development process.
It then follows that this testing suite should itself be tested too. One way of testing this is with
the use of mutation-based testing. This technique entails changing the software in ways that
resemble common errors, and checking whether the testing suite can differentiate between the
mutations and the original software.

In Model Driven Engineering (MDE), model transformations are used to transform models,
much like in classic software engineering the software transforms the data. Applying mutation-
based testing to model transformations would then mean transforming the original transforma-
tion with common errors, before running the test suite. The transformations applied to these
transformations are called Higher-Order Transformations (HOT).

In this paper, these concepts are explained a little more in-depth, based on reading from the
papers cited.

2. Mutation-Based Testing

The concept of mutation-based testing was first explored in classic software engineering as a
way to test a test suite [1]. This approach takes the source code of a program and changes small
things. To be effective, the changes made should reflect common mistakes:

Email address: joran.dox@student.uantwerpen.be (Joran Dox)

1



add / subtract 1 from integer constants

change * to /

change TRUE to FALSE

delete a statement

The resulting source code, assuming it compiles, is then run through the test suite. If the test
suite does not find the program faulty, then either a new test should be added to address this
(faulty test suite) or the mutation was ineffective for some reason (e.g. dead code or redundant
checks).

results
of p

insert the | mutation

@ operators §

improve the test dataset

In this graph, courtesy of [2], P is the program to be tested, the testing suite is in the form of
the test data (input) and the oracle, which “kills” the detected mutants. Any mutants left over
that are not equivalent to P are then used to improve the test dataset.

3. Model Transformations and Higher-Order Transformations

In Model-Driven development, we can draw a parallel between the input/output of a program
and a model, and between software and model transformations. It then follows that software
taking software as input and producing mutated software as output, has its equivalent in model
transformations applying to model transformations. This kind of meta-transformations are called
Higher-Order Transformations [3].

4. Mutation-based Testing of Model Transformations

When applying the concept of mutation-based testing to MDE, one problem arises immedi-
ately: what mutations should be created to reflect real-life situations? Common mistakes in
classical programming are not necessarily common mistakes in MDE. [2] defines following cat-
egories:

e navigation: the model is navigated thanks to the relations defined on its input/output meta-
models, and a set of elements is obtained.

e filtering: after a navigation, a set of elements is available, but a treatment may be applied
only on a subset of this set. The selection of this subset is done according to a filtering
property.

2



e output model creation: output model elements are created from extracted element(s).

o input model creation: when the output model is a modification of the input model, elements
are created, deleted or modified.

Across these categories, 10 mutation operators are defined for a model transformation context.
The list is moved to Appendix A, copied from [4] for brevity, but can be found in full detail in
paper [2].

5. Conclusion

Mutation-based testing is a great way to ensure the reliability of a test suite in classic software
engineering. It also holds potential to be applied in Model-based development. Implementing
a mutation-based meta-testing suite in AToMPM [5] would be an asset to the MDE community,
and this will be my goal in the following project.

Appendix A. Mutant Operators

Appendix A.l1. Navigation

e Relation to the same class change (RSCC):This operator replaces the navigation of one as-
sociation towards a class with the navigation of another association to the same class(when
the metamodel allows it).

e Relation to another class change (ROCC):This operator replaces the navigation of an asso-
ciation towards a class with the navigation of another association to another class.

e Relation sequence modification with deletion (RSMD):During the navigation, the trans-
formation can navigate many relations successively. This operator removes the last step off
from the composed navigation.

o Relation sequence modification with addition (RSMA):This operator does the opposite of
RSMD. The number of mutants created depends on the number of outgoing relations of the
class obtained with the original transformation.

Appendix A.2. Filtering

o Collection filtering change with perturbation (CFCP):This operator aims at modifying an
existing filtering, by influencing its parameters. One criterion could be a property of a class
or the type of a class; this operator will disturb this criterion.

o Collection filtering change with deletion (CFCD):This operator deletes a filter on a collec-
tion; the mutant returns the collection it was supposed to filter.

e Collection filtering change with addition (CFCA):This operator does the opposite of
CFCD.It uses a collection and processes a useless filtering on it. This operator could re-
turn an infinite number of mutants, we have to restrict it. We choose to take a collection and
toreturn a single element arbitrarily chosen.

3



Appendix A.3. Creation

e (Class compatible creation replacement (CCCR):This operator replaces the creation of an
object by the creation of an object of a compatible type. It could be an instance of a child
class, of a parent class or of a class with a common parent.

e (lasses association creation deletion (CACD):This operator deletes the creation of an asso-
ciation between two instances.

o Classes association creation addition (CACA):his operator adds a useless creation of a rela-
tion between two class instances of the output model, when the metamodel allows it.

References

(1]

(2]
(3]

(4]

[3]

J. Andrews, L. Briand, Y. Labiche, Is mutation an appropriate tool for testing experiments? [software testing],
in: Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, 2005, pp. 402—411.
doi:10.1109/ICSE.2005.1553583.

Mutation analysis testing for model transformations, in: A. Rensink, J. Warmer (Eds.), Model Driven Architecture
Foundations and Applications, Vol. 4066 of Lecture Notes in Computer Science, 2006. doi:10.1007/11787044_28.
On the use of higher-order model transformations, in: R. Paige, A. Hartman, A. Rensink (Eds.), Model Driven Ar-
chitecture - Foundations and Applications, Vol. 5562 of Lecture Notes in Computer Science, 2009. doi:10.1007/978-
3-642-02674-4_3.

A. Parsai, Mutation-based testing of model transformations (using hot), [Online; accessed 10-December-
2015, http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/201314/projects/Ali.Parsai/]
(2013).

E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, H. Ergin, Atompm: A web-based modeling
environment., in: Demos/Posters/StudentResearch@ MoDELS, 2013, pp. 21-25.



