
Efficient model transformations for novices

Sten Vercammen

University of Antwerp

Abstract

This paper will give an overview, and understandable explanation with examples, of known
techniques for pattern matching and solving the sub-graph homomorphism problem. For
clarity reasons, the presented techniques do not include performance adaptation, but will
list some possible extensions. It is intended as a guideline, even for novices, and provides
an in-depth look at the workings behind various techniques for efficient pattern matching.

Keywords: search plans, constraint satisfaction problem, Ullmann, VF2, pattern matching

1. Introduction

While pattern matching is not limited to the scope of model driven engineering, it affects
model driven engineering quite drastically. In model driven engineering one does not code
the software, one models it. Which allows for more efficient software development. This
can easily be seen when you consider that changing one association in a model can affect
thousands of lines of code. Changing the association of a model might take a few seconds,
but rewriting thousands of lines of code will take much, much longer. An other advantage
of model driven engineering is that part of the complexity will be hidden. Which makes it
possible for domain experts to easily verify (or even model) the models, as they do not need
to have knowledge of programming (code).

In model driven engineering models get developed and these models must confirm to
some meta-models. Furthermore, dynamic semantics are necessary. These models can be
represented as graphs. This allows for defining some kind of execution, in the form of
so-called transformation rules. The rules consist of two parts, a so-called left hand side
(LHS) (the pattern we want to find) and a so-called right hand side (RHS) (the transformed
pattern). A transformation rule is executed on a so called host graph. These graph represents
the model. Executing a transformation rule means searching for an occurrence of the pattern
from the LHS in the host graph and adapting the occurrence so that it matches the pattern
from the RHS. A LHS can contain one or multiple NAC’s, these patterns will prevent the
transformation rule from executing if they are found in the graph. For clarity reasons we
will assume that no transformation rules will have a NAC.

Email address: Sten.Vercammen@student.uantwerpen.be (Sten Vercammen)

Preprint submitted to Model Driven Engineering January 22, 2016

While adapting the found occurrence to the pattern of the RHS, or the so-called replace-
ment operation, is not computationally expensive, matching the graph pattern is the central
efficiency problem for the execution of these replacement rules. In general, a naive algo-
rithm for executing a graph replacement operation step (a transformation rule) has the time
complexity O(P ∗ NL) where P is the number of inspected productions, N is the number
of vertices in the current work graph, and L is the maximum size of a left-hand side of the
system [1].

This paper will explain, in-depth, some known techniques for pattern matching and solv-
ing the sub-graph homomorphism problem. For coherence between this paper and example
we provide an easy to understand implementation for all algorithms1. To keep the presented
techniques understandable, they will not include performance adaptation. We will however
list some possible extensions to further improve their execution time.

2. Graph Pattern Matching

For models implemented as graphs, pattern matching, and in particular the sub-graph ho-
momorphism problem, is NP-complete [2]. Trough the use of heuristics, various exponential-
time worst case algorithm can reduce their average-time complexity. These approaches can
be divided clearly into two categories: search plans2 and constraint satisfaction problems
(CSP).

In the next sections, we start by explaining and listens the problems of a naive imple-
mentation. Then we will explaining both categories of graph pattern matching and explain
some of their known (and most efficient) algorithms.

2.1. Running Example

Throughout this paper we will use the same example when showing the working of the
different algorithms. Consider a host graph H, on which we want to perform a Graph
Transformation (GT) rule L R. The GT rule exists of a graph pattern P , the LHS L,
and a replacement graph, the RHS R. Executing a GT rule is done by first matching an
occurrence of the LHS in the host graph (H), then changing the matched occurrence to
the RHS of the GT rule. Figure 1a and 1b will respectively be used as our example of the
pattern and host graph.

3. Naive implementation

A naive implementation would select a pattern vertex, then match it to a graph vertex
of the same type. It would then try to match all edges of the pattern vertex onto to the
matched graph vertex. The algorithm would then, for each of those pattern edges their

1Which can be found on:
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/projects/Sten.Vercammen

2Note: all subsections of section 4 are heavily based upon [3]

2

a : A b1 : B
g : G

b2 : B
h : H

(a) A simple pattern graph P .

A

B

G B

G

A G

G

B

G

BH

I

(b) A simple host graph H.

Figure 1: Running example

source or target (depending if it was an incoming or outgoing edge), try to match a graph
vertex onto it. And then match its edges and so on.

This is very inefficient and has an exponential runtime. The matchNaive function in the
patternMatching.py file implements this behaviour1.

4. Search Plans

In short, a search plan defines the traversal order for the vertices of the model to check
if a pattern can be matched (i.e., an occurrence). A valid search plan P is defined as a
well-formed sequence P = 〈o1, ..., ok〉 of primitive matching operations.

4.1. Primitive Matching Operations

A primitive matching operation is an atomic search action that deals with exactly one
pattern element. There are five distinct kinds of primitive matching operations:

lkp(x): A lookup operation that binds the pattern element x to a corresponding host graph
element.

in(v, e): An incoming edge operation that binds the pattern edge e, an incoming edge of the
already bound pattern vertex v, to a corresponding edge of the host graph.

out(v, e): An outgoing edge operation that works analogously to in(v, e), but e is now an outgoing
pattern edge of v.

src(e): A get source operation that binds the source vertex of an already bound pattern edge
e to the source vertex of the current host graph image of e.

tgt(e): A get target operation that works analogously to src(e), but instead of working with
the source vertex, it works with the target vertex.

The operation o := lkp(v), with pattern vertex v will be successfully executed if there
is at least one unbound vertex w in H such that v and w have compatible types. If this is
the case, o will bind v to w. Otherwise the execution is not successful, and fails.

3

Matching a primitive operation is implemented by the matchOP function under the
matchSP function in the patternMatching.py file1.

4.2. Example Search Plans

A search plan P = 〈o1, ..., ok〉 is valid if:

1. Every element of the pattern graph is bound exactly once.

2. If an operation oi requires that a pattern element is already bound, the element must
be bound by one of its preceding operations o1, ..., oi−1

P1 shows an invalid search plan:

P1 := 〈out(a, g), lkp(b1), tgt(g), lkp(h)〉

It is invalid for several reasons. Firstly, the operation out(a, g) is not valid, as it requires
that the pattern vertex a is already matched (which can not be as it is the first operation).
Secondly, the second and third operation both want to bind b1, which is not allowed (lkp(b1)
binds b1 explicitly and tgt(g) binds b1 implicitly, as it binds the target vertex of an already
bound pattern edge g which, in this case is b1). And thirdly, as every element of the pattern
graph must be bound exactly once, there must be exactly as many operations in the search
plan as there are elements in the pattern graph. Because there are five elements in the
pattern graph, and only four operations in the search plan, for this reason also, the search
plan is invalid.

Keeping the previous in mind, following two search plans are considered valid.

P2 := 〈lkp(b1),out(b1, h), in(b1, g), tgt(h), scr(g)〉
P3 := 〈lkp(h), tgt(h), src(h), in(b1,g), src(g))〉

In our running example (with the host graph from figure 1b) there is only one occurrence
of the pattern P (pattern from figure 1a). If we execute P2, the first operation (o1 := lkp(b1))
will perform a lookup of the type B. There are four alternatives (see figure 2a). If we choose
a “wrong” vertex we will not be able to find the pattern and we will have to use backtracking
to continue our search. Assuming we do choose the right vertex (in figure 2a, the lightest
highlighted one), we will be able to match our second operation (see figure 2b). The second
operation binds an outgoing edge from b1 of type H. The third operation binds an incoming
edge to b1 of type G (see figure 2c). The fourth operation binds a target vertex from the
previously bound edge h (see figure 2d). The fifth and last operation binds a source vertex
from the previously bound edge g (see figure 2e).

As you might have noticed by now, P2 is not a bad solution in terms of speed, as in
the worst case, it processes eight elements (if in the first step we first execute all other type
B vertices, before choosing the correct one like in figure 2a). P3 however is the optimal
solution, as it always processes the minimum amount of elements (in this case, five). As
there are many possible search plans, one way of finding the “best” possible search plan is
through the use of a cost model.

4

A

B

G B

G

A G

G

B

G

BH

I

(a) o1, four alternative highlighted matches of
type B, we choose one (the lightest)

A

B

G B

G

A G

G

B

G

BH

I

(b) o2, outgoing edge h match from previously
matched b1

A

B

G B

G

A G

G

B

G

BH

I

(c) o3, incoming edge g match from previously
matched b1

A

B

G B

G

A G

G

B

G

BH

I

(d) o4, match target vertex from a previously
matched vertex

A

B

G B

G

A G

G

B

G

BH

I

(e) o5, match source vertex from a previously
matched vertex

Figure 2: Execution of search plan P2

5

4.3. Cost Model

A cost model assigns a cost to every matching operation, and consequently to every
search plan. This makes search plan generation an optimization problem and allows the
generation of matching strategies at runtime depending on the current host graph. The
example in section 4.2 showed us that an operation that resulted in choice, might cause the
total number of processed elements to go up. As we want to process as least elements as
possible, operations that result in choice are deemed more costly.

We can assign a cost for each primitive matching operation:

Operation Cost Explanation
lkp(x) |typeof(x) in H| The more elements of type x the host graph H con-

tains, the more choices the operation creates.
in(v, e),
out(v, e)

AVG(possibilities) The example out(a, g) will correspond into two or
three possibilities for binding g, depending on the
binding of a. We therefore assign the average of the
possibilities to the cost function. (Note: average can
be geometric mean or arithmetic mean, etc)

src(e),
tgt(e)

1 As each edge has exactly one source and one target
vertex, these operations do not create a choice.

Calculating the average possibilities for the in(v, e), out(v, e) operations requires keeping
some statistics. These can be kept, and updated, by storing a counter for each edge type,
for each vertex type. (So we save multiple edge type counters, one for each vertex type.)
We do this for both the incoming and outgoing edges. An implementation of this can be
found in the searchGraph.py file1. It extends a normal graph, and overloads the adding of
the edges for updating the counters.

The total cost of a plan will be assigned as:

Plan Cost Description

P = 〈o1, ..., ok〉
k∑

i=1

i∏
j=1

cj For search plan P = 〈o1, ..., ok〉, if c(oi) > 0, with
1 ≤ i ≤ k, then the execution of oi might cause
backtracking. This means that the remaining part
oi+1, ..., ok might be executed up to c(oi) > 0 times.
So c(P) = c1 + c1c2 + ... + c1c2...ck

The cost of these primitive matching operations, and consequently the cost of the search
plan, depends on the current host graph. An analysis on the host graph to calculate the
cost is linear to the number of elements in the host graph.

4.4. Generating a Plan Graph

Before generating an “optimal” search plan, we will first need to explain the so called
plan graph, as it is used for calculating the “optimal” search plan. A plan graph is generated
from a pattern graph and will look quite similar to it (e.g. figure 3 is the corresponding
plan graph of the pattern from figure 1a).

6

a g
 out

b1
 in

h
 out

b2
 in

root

 lkp lkp lkp lkp lkp

 src
 tgt

 src
 tgt

Figure 3: Plan graph of the simple pattern graph in figure 1a

Creating a plan graph
∼
L from a pattern graph L follows following rules:

1. For every edge and every vertex in L, create exactly one vertex representing the pattern
element and label it with the same name as the pattern element.

2. Create a root vertex in
∼
L.

3. For each element x in
∼
L that is not the root vertex, create an edge from the root vertex

to x and label it with lkp.

4. For every element x in
∼
L that represents an edge e in L;

• create an edge labelled with tgt, leading from x to the vertex in
∼
L representing

the target vertex of e in L, and a reverted edge labelled in.

• create an edge labelled with src, leading from x to the vertex in
∼
L representing

the source vertex of e in L, and a reverted edge labelled out.

The names of the edges in the pattern graph represent the primitive matching operations.
An implementation for generating the searchplan can be found in the planGraph.py file1.

It contains a function for updating the cost of the edges so that we can regenerate an optimal
search plan every time we change the host graph.

4.5. Logarithmized Cost Function

The most significant term of cost of the plan P = 〈o1, ..., ok〉 is c1c2...ck. As we want to
minimize the cost, we can look for the minimal cost of the most significant term. As the cost
of all operations in P appears exactly once in c1c2...ck and each ci > 1 (if we assume that we
can match the pattern), we can rewrite it to a minimal operation selection S :={o1, ..., o2}.
The cost of S = c1c2...ck. As all individual costs of the operations are larger than one, we can
perform our search for a minimal operation selection equivalently with a logarithmized cost
(ln(c1...ck) = ln(c1) + ...+ ln(ck)). This has the benefit that we no longer need to minimize
a product, but that we can minimize a sum, which is computationally much faster.

We use the logarithmized cost is build in into the planGraph.py file1.

7

4.6. Generating a Search Plan
The mapping between the possible operation selections and the set of directed spanning

trees (DST) of the plan graph is a one-on-one mapping. The corresponding DST of a minimal
operation selection is a minimum directed spanning tree (MDST) according to logarithmized
cost. Therefore, finding a minimal operation selection corresponds to finding a MDST in
the plan graph, which can be solved in polynomial time by the Edmonds algorithm [4].

Adding the cost for each primitive pattern operation from our host graph (figure 1b) to
the plan graph (figure 3) results in figure 4. The bold drawn edges represent the MDST.
The according mimimal operation selection is:

S := {lkp(h), tgt(h), src(h), in(b1,g), src(g)}

a g
out (0.90)

b1
in (0.35)

h
out (0.00)

b2
in (0.00)

root

lkp (0.69) lkp (1.39) lkp (1.39)lkp (1.61) lkp (0.00)

src (0.00)
tgt (0.00)

src (0.00)
tgt (0.00)

Figure 4: The plan graph from figure 3 with logarithmized costs induced by the host graph from figure 1b.
The bold drawn edges mark an MDST

Edmonds algorithm will repeatedly select edges, minimal edges are preferred, for the
MDST. When more than one edge concerned has minimal cost3, the kind of primitive op-
eration will determine the preference. We favour src(e) and tgt(e) operations over in(v, e)
and out(v, e) operations (as src(e) and tgt(e) are almost cost free). We favour in(v, e) and
out(v, e) operations over lkp(x) operations. The reason behind this is that lookup opera-
tions do not take the contiguity of pattern and host graph into account, which could raise
needless choices during the graph pattern matching.

We have not explained Edmonds algorithm in this paper, as we considered it to be out
of scope, but it is implemented in the planGraph.py file under the Edmonds function 1.
There are a lot of comments to help you understand the algorithm, so if you are interested
in the workings, definitely take a look at it.

Matching all primitive operation is done in a recursive manner (implemented by the
matchAllOP function). We do note that recursion in python has a very limited depth. If
you want to use it for bigger graphs we advice to rewrite it to eliminate recursion.

3The logarithmized cost values are floats, so we need to to weaken them before we can compare them
(e.g. round to 0.001).

8

4.7. Operation Ordering

Building a valid search plan from the minimal operation selection S, can be done by
simply traversing the MDST starting from the root vertex. While traversing, we successively
emit the operations represented by each edge. This generates all operation sequences that
are valid search plans.

Finding the “best” search plan is done by traversing the plan graph in a best-first manner,
preferring edges of minimal cost. The reason behind this is that: If we look at the plan cost:
c(P) = c1 + c1c2 + ... + c1c2...ck, we can see that the earlier the operation occurs, the more
impact on the overall cost it has. Placing the cheap operations as early as possible and the
expensive ones as late as possibly will result in a smaller cost.

We implemented a SortedContainer class to aid the traversal of the MDST in the plan-
Graph.py file 1.

4.8. Alternative Techniques

As we have seen in section 4.3, a cost model assigns a cost to every matching operation,
and consequently to every search plan. This makes search plan generation an optimization
problem and allows the generation of matching strategies at runtime depending on the
current host graph. This also means that variations of the search plan technique often just
adapt the heuristic. There are numerous of techniques that propose a heuristic, graph based
algorithm for efficient pattern matching [5], [6]. These heuristics can take into account
given typing information with respect to the meta-model elements and/or the cardinality
constraints defined in the meta-model. More complex model-specific optimization steps
where adaptive search plans are generated also exist. [7]. In the latter, the optimal search
plan will be selected from previously generated search plans at run-time, based on statistical
data that is collected from the current instance model under transformation.

Other optimizations for search plans are [8] (but not limited to): indexing on type and/or
by storing reverse associations, caching, pivoting and overlapped pattern matching.

5. Constraint Satisfaction Problems (CSP)

In this section, we will briefly explain what a CSP is, before explaining some efficient
and well-known algorithms.

5.1. CSP Definition

A constraint satisfaction problem (CSP) is defined [9] by the following triplet 〈X,D,C〉.
Where X = {X1, X2, ..., Xn} is an ordered set of n variables. D = {D1, ..., Dn} where each
Di is a finite domain of possible values for each variable Xi. C = {C1, ..., Cm} is a set
of constraints among variables. Each constraint consists of a pair 〈{j1, ..., jr}, Rj1,...,jr〉, or
in short 〈tj, Rj〉, where tj ⊂ X is a subset of r variables and Rj a r-ary relation on the
corresponding subset domains Dj. Rj1,...,jr is the constraint on the ordered set of variables
{j1, ..., jr}, which is a subset of Dj1×...×Djr and only contains the allowed combinations of
values for the variables j1, ..., jr.

9

An evaluation v on the constraint 〈tj, Rj〉, a function from tj to Rj, is satisfied if the
values from tj satisfy the relation Rj.

An evaluation is complete if it includes every variable in X. A (possibly incomplete)
evaluation is consistent if it does not violate any constraints it is involved with. We call
an evaluation a solution for the constraint satisfaction problem if it is both consistent and
complete.

5.2. Use Cases for CSP

Constraint satisfaction problems can be used for finding one solution, finding all solutions,
and for finding the best solution, given some preference criteria. While one might think we
are interested in finding the best solution for graph matching, this is not the case. We want
to find a solution as fast as possible, but we only need to find one solution. An example
of the best solution would be finding the shortest route for the travelling salesmen problem
[10].

5.3. In General

For solving constraint satisfaction problems, most algorithms start with an empty (triv-
ially consistent) assignment. They attempt to extend it by adding one variable at a time.
The variable can only be added successfully if, after adding it, the assignment is still con-
sistent. If no variable can be added while keeping the assignment consistent, the algorithm
will backtrack and change its previous decision. The general idea behind this is no different
than the one used for search plans. The algorithm will stop when a total assignment has
been computed, or when the whole search space has been unsuccessfully traversed. During
the search, a variable can be one of following three types: a past variable if it is assigned, a
future variables if it is unassigned, or a current variable if it is under consideration.

Look-ahead algorithms are considered to be the best choice for solving non-trivial CPS
problems. These algorithms remove some future variables each time a current variable is
assigned. This effectively limits the search space. The remaining future variables are often
called the feasible variables.

5.4. Graph pattern matching as a CSP

Graph pattern matching can be described as a constraint satisfaction problem [11] by
the following triplet: 〈X,D,C〉. The elements of the pattern graph (used in the LHS of a
GT rule) represent the variables (X). The elements of the model (the host graph) denote
the domain (D) and typing (each variable has its own domain). While the links (edges)
and attributes define the set of constraints (C). As mentioned in section 5.3, the CSP
algorithms will use backtracking [12] for finding an occurrence (an isomorphic sub-graph)
of the pattern graph in the host graph. Most of these algorithms will explore the search
space in a depth-first order (as this tends to require less memory than breath first algorithms
which, in general, are better suited for finding the shortest path). In the next sections we will
explain the Ullmann [13] 4 and VF2 [15] 5 algorithm. These are some of the most efficient

4Note: section 5.6 and 5.6.3 are heavily based upon [14]
5Note: section 5.7 and 5.7.3 are heavily based upon [14]

10

and well-known algorithms for solving the sub-graph isomorphism problem, as a constraint
satisfaction problem.

5.5. Adjacency Matrices

In this section we briefly explain adjacency matrices, if you are familiar with it, you can
skip this section.

The obvious way of representing a graph G is via its ordered pair, where G = (V,E). V
is the set of all vertices and E the set of all edges. A (finite) graph can also be represented
with an adjacency matrix. For a graph with n vertices, this results in a n× n dimensional
square matrix A. Where A[i, j] = 1 if there is an edge from vertex i to vertex j, otherwise
it is 0. In the special case were i is equal to j and there is an edge from vertex i to vertex
j (the so-called self-loop) A[i, j] = 2. If the graph is undirected, the adjacency matrix is
symmetric.

Figure 5a shows an example of a graph with undirected edges, directed edges and a self
loop. Figure 5b represents its adjacency matrix. If we call this matrix M , then we see that
M [0, 0] is 2. This is because vertex “0” has a self loop. M [0, 1] and M [1, 0] are both 1
because there is an undirected edge between these two vertexes. M [3, 5] is 1, but M [5, 3] is
0 because there is a directed edge from vertex “3” to vertex “5”, but not from “5” to “3”.

0

1 2

4 3

5

(a) Example graph

x 0 1 2 3 4 5
0 2 1 1 0 0 0
1 1 0 0 0 1 0
2 1 0 0 1 1 0
3 0 0 1 0 0 1
4 0 1 0 0 0 0
5 0 0 0 0 0 0

(b) Adjacency matrix M

Figure 5: Example graph with his adjacency matrix

Creating the adjacency matrix is implemented in the createAdjacencyMatrixMap function
in the patternGraph.py file1. This also returns an array of the vertices to save the order in
which the matrix is created.

5.6. Ullmann

Given two graphs H = (VH , EH) (the host graph) and P = (VP , EP) (the pattern graph),
the Ullmann algorithm tests whether P is a sub-graph of H. We would not have explained

11

adjacency matrices if we did not use them, so we denote H and P as the adjacency matrices
of H and P (which we will use later in the algorithm). In the first step of the Ullmann
algorithm a |VP | × |VH | binary matrix M* is created, such that:

M*[v, w] =

{
1, if deg(v) ≤ deg(w) for v ∈ VP and w ∈ VH

0, otherwise.

Where deg : V → N+ is a function mapping a vertex to its degree: the amount of inci-
dent edges it is connected to. M* represents all possible vertex candidates of VH that are
isomorphic to vertices of VP . If M*[v, w] = 1, the vertex v ∈ VP is isomorphic to vertex
w ∈ VH .

Creating the adjacency matrix is implemented in the createM star function under the
matchUllmann function in the patternGraph.py file1.

In the second step, the algorithm tries to find an isomorphic mapping for the vertices of
P to H. This mapping is represented by a matrix M if, and only if M(MH)T = PT . Each
row of the matrix M must have exactly one 1 element and each column may have at most
one 1 element.

Starting from M*, the algorithm will thus search for a valid M, by iterating over each
possible vertex candidate (in a depth first order). At each step a vertex from VH , a row
of M is assigned one of the matches (in decreasing order of degree6, implemented in the
createDecreasingOrder function under the matchUllmann function in the patternGraph.py
file1), by setting its column to 1 and the rest to 0. This search happens in a depth-first
manner, but it is optimized with a refinement procedure (see section 5.6.1) that takes the
neighbouring vertices into account.

Whenever this refining of M results in a row without a 1 element, the algorithm back-
tracks and the next potential match is tried. Otherwise (the row has one 1 element), the
algorithm continues with the next row of M. The algorithm will end if either a complete
match is found or when all possible matches have been tried.

5.6.1. Refinement Procedure

A vertex v of VP may only match, a vertex w of VH represented by a 1 in M [i, j], if
all its neighbours can be matched. If at least one of its neighbours does not match, it
will not consider w a valid match for v and set the corresponding element of the matrix
to 0 (M [i, j]), effectively reducing the search space. This refinement procedure verifies all
possible matchings (candidates) for all vertices in the pattern. If at least one candidate
is eliminated (put to 0), it will rerun the refinement procedure. At first this might not
seem like a big improvement, but eliminating one candidate in the a round, might result in
eliminating multiple candidates in the next round.

This refinement procedure is implemented in the refineM function under the matchUll-
mann function in the patternGraph.py file1.

6for efficiency, to fail as fast as possible, it turns out that the more edges a vertex has, the sooner it will
fail in matching the pattern

12

5.6.2. Implicit Isomorphism

It is important to note that we do not need to explicitly check whether the found subgraph
of H, represented in M, is isomorphic to P . We do not need the calculate if M(MH)T = PT .
This is implicitly calculated by the refinement procedure described in section 5.6.1.

If you do not want the Ullmann optimazations, and thus only do a depth first search,
and check the isomorphism explicitly for each possible match, you can do so by using the
commented code in the propConnected function under the matchUllmann function in the
patternGraph.py file1.

5.6.3. Ullmann Efficiency and Extension Options

The more sparse M* initially is, the faster the algorithm will be. The unmodified Ull-
mann algorithm does not take into consideration the type of the vertexes, their attributes,
labels etc. Extending the algorithm so that generating M* does take the type of the vertexes
etc into consideration can drastically increase the sparsity of M*, effectively speeding up
the algorithm. Some approaches also extend the deg function mapping to incorporate more
sophisticated feasibility tests (which will in turn also result in a more sparsely M*).

5.6.4. Ullmann Example Without Refinement

In this section we will run the Ullmann algorithm on our running example (our host
graph H in figure 1b and our pattern graph P in figure 1a). We first explain it without
the use of the refinement procedure. Effectively running a normal depth first search and
checking only on the end if the found match is isomorphic to the pattern. We will explain
it with the refinement procedure in the next section.

The example has directed edges and we will take this into account. In an undirected
graph, the incident edges do not have a direction, so we can count them all. In a directed
graph we can associate a vertex with its in-degree and its out-degree, where the in-degree
represents the number of edges which target are to the vertex and the out-degree represents
the number of edges which source is the vertex. Which one we choose in not important (we
can even choose both), as long as we are consequent in our choice. In the example, we will
use the out-degree.

In figure 6a we relabelled the vertices, this allows for more clarity (as now the vertices
are unique) when building our adjacency matrix H in figure 6b and in our |VP |×|VH | binary
matrix M* in figure 8. Even though the labels of the vertices are extended with a number,
we still mean that the type of the vertex is unaltered (so the type is without the number).

Ullmann’s algorithm requires the use of the adjacent matrices of the host graph H and
pattern graph P , these can respectively be found in figure 6b and 7. The |VP | × |VH | binary
matrix M* is created in figure 8. As we choose the out-degree, M*[v, w] will result in a
one if the out-degree of v ≤ out-degree w, with v ∈ VP and w ∈ VH . As vertex a ∈ VP has
out-degree one and vertex A0 ∈ VH has out-degree two, M*[a,A0] = 1. As vertex a ∈ VP

has out-degree one and vertex B0 ∈ VH has out-degree zero, M*[a,B0] = 0. We continue
until all elements of the matrix M* are filled.

In the next step, Ullmann will try to find a match. Figure 9 represents the execution of
the Ullmann algorithm on our example host graph H for matching pattern P . It will start

13

with M*, match a vertex from VH , assign one of the matches with one (in decreasing order
of degree), so A1 will be our first match, as it has a degree of three (all other elements of
that row will become zero). As Ullmann’s algorithm searches depth first, the next match is
from the second column. Unfortunately this match is not compatible so the algorithm will
backtrack. As we did not use the refinement procedure we will explicitly need to check if the
pattern graph is isomorph to the found occurrence. Once an match is found (in the figure,
a lowest matrix block without the darkest colours), Ullmann verifies if the found match is
isomorphic. P is isomorphic if and only if ∀i, j,P[i, j] = 1 : M(MH)T [j, i] = 1.

A0

B0

G B1

G

A1 G

G

B2

G

B3H

I

(a) Relabelled host graph

x A0 A1 B0 B1 B2 B3
A0 0 0 1 1 0 0
A1 0 0 1 1 1 0
B0 0 0 0 0 0 0
B1 0 0 0 0 0 0
B2 0 0 0 0 0 1
B3 0 0 0 1 0 0

(b) Adjacency matrix H

Figure 6: Relabelled host graph with his adjacency matrix

x a b1 b2
a 0 1 0
b1 0 0 1
b2 0 0 0

Figure 7: Adjacency matrix P

x A0 A1 B0 B1 B2 B3
a 1 1 0 0 1 1
b1 1 1 0 0 1 1
b2 1 1 0 0 1 1

Figure 8: |VP | × |VH | binary matrix M*

14

1

2

4

3

5

8

1
0

9

1

1

1
2

…

…

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

1

1

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

6

7

F
ig

u
re

9:
U

ll
m

a
n

n
ex

ec
u

ti
o
n

w
it

h
o
u

t
th

e
re

fi
n

em
en

t
p
ro

ce
d

u
re

15

Our first match is after step 5. We now can check whether our found match is isomorphic.

M(MH)T =

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0

×

0 1 0 0 0 0

1 0 0 0 0 0
0 0 0 0 1 0

×


0 0 1 1 0 0
0 0 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0





T

=

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0

×
0 0 1 1 1 0

0 0 1 1 0 0
0 0 0 0 0 1

T

=

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0

×


0 0 0
0 0 0
1 1 0
1 1 0
1 0 0
0 0 1


=

0 0 0
0 0 0
1 0 0


P is isomorphic if and only if ∀i, j,P[i, j] = 1 : M(MH)T [j, i] = 1. Which in this case,

it is not. Therefore the algorithm will continue searching. The second and third match will
also fail this check, but the fourth match (after step 12) will succeed:

16

M(MH)T =

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×

0 1 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

×


0 0 1 1 0 0
0 0 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0





T

=

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×
0 0 1 1 1 0

0 0 0 0 0 1
0 0 0 1 0 0

T

=

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×


0 0 0
0 0 0
1 0 0
1 0 1
1 0 0
0 1 0


=

0 0 0
1 0 0
0 1 0


P is isomorphic if and only if ∀i, j,P[i, j] = 1 : M(MH)T [j, i] = 1. Which in this case,

it is. The algorithm stops searching as it found a match. The arrows with the three dots in
figure 9 are just to show how the algorithm would continue (backtracking) if in step 12 no
match was found.

5.6.5. Ullmann Example With Refinement

After each step, the refinement procedure will prune the (until then considered valid)
possible mappings who’s neighbours can not be matched. In figure 10 we can see that
after the third time (arrow with 3 on) the refinement procedure turns the selected node for
matching to a 0 (represented by the white 0 and darkest background colour), creating a 0
row. This refinement procedure prunes the search tree, and the matrices that are in the
boxed figure will not be executed. Instead the algorithm no directly follows arrow 8.

17

1	 2	

4	

3	

5	

8	

10
	

9	
11

	
12

	

…
	

…
	

1	
1	

0	
0	

0	
1	

1	
1	

0	
0	

1	
1	

1	
1	

0	
0	

1	
1	

	

0	
1	

0	
0	

0	
0	

1	
1	

0	
0	

1	
1	

1	
1	

0	
0	

1	
1	

	

0	
1	

0	
0	

0	
0	

	
0	

1	
0	

0	
0	

0	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
0	

1	
0	

0	
0	

0	
0	

	1	
0	

0	
0	

0	
	

0	
0	

0	
0	

0	
0	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

0	
0	

0	
0	

1	
0	

1	
1	

0	
0	

1	
1	

	
1	

1	
0	

0	
1	

1	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
1	

1	
0	

0	
1	

1	
	

	
	

	
	

	
	

	
0	

1	
0	

0	
0	

0	
	

0	
1	

0	
0	

0	
0	

	
0	

1	
0	

0	
0	

0	
	

0	
1	

0	
0	

0	
0	

	
0	

1	
0	

0	
0	

0	
	

0	
1	

0	
0	

0	
0	

	
0	

1	
0	

0	
0	

0	
	

0	
1	

0	
0	

0	
0	

	
	

	
	

	
	

	
1	

0	
0	

0	
0	

0	
	

1	
0	

0	
0	

0	
0	

	
1	

0	
0	

0	
0	

0	
	

1	
0	

0	
0	

0	
0	

	
0	

0	
0	

0	
1	

0	
	

0	
0	

0	
0	

1	
0	

	
0	

0	
0	

0	
1	

0	
	

0	
0	

0	
0	

1	
0	

	
	

	
	

	
	

	
0	

1	
0	

0	
0	

0	
	

1	
0	

0	
0	

0	
0	

	
0	

0	
0	

0	
1	

0	
	

0	
0	

0	
0	

0	
1	

	
0	

1	
0	

0	
0	

0	
	

1	
0	

0	
0	

0	
0	

	
0	

0	
0	

0	
1	

0	
	

0	
0	

0	
0	

0	
1	

	

6	
7	

F
ig

u
re

10
:

U
ll

m
a
n

n
ex

ec
u

ti
o
n

w
it

h
th

e
re

fi
n

em
en

t
p
ro

ce
d

u
re

18

5.7. VF2

The VF2 algorithm operates in a similar fashion as the Ullmann algorithm. It also
constructs the search tree, traversing the host graph depth-first and backtracks when the
current-state does not succeed the feasibility test. It also performs pruning on the search
space during the matching process.

Given two graphs G = (VG, EG) (the host graph) and H = (VH , EH) (the pattern graph),
we denote M : VH → VG as the isomorphic vertex mapping. M(c) holds the set of current
matches (vH , vG) at the search state s (the dashed lines in figure 11, which links the black
vertices).

MH(s) and MG(s) respectively represent the vertices of VH and VG contained in M(s)
(respectively the black vertices in H and G in figure 11). N in

H (s) is the set of vertices adjacent
to MH(s) along the incoming edges and N out

H (s) the set of vertices adjacent to MH(s) along
the outgoing vertices. NH(s) = N in

H (s)∪N out
H (s) and corresponds to the highlighted vertices

in figure 11. V H = VH−MH(s)−NH(s) represents the vertices not connected to the current
mapping (these correspond to the white vertices in figure 11). NG(s) and V G(s) are defined
analogously.

Figure 11: Partial set from the pruning technique of VF2 7

Each step of the depth-first search, the algorithm will choose a candidate pair p = (vp, wp)
from the ordered list P (s), which contains all candidate pairs. The order implemented by
VF2 gives priority to the vertices in N out

H and N out
G , then in N in

H and N in
G and lastly (only if for

unconnected graphs) in V H(s) and V G(s). The feasibility test (see section 5.7.1) will decide
if the search-state gets augmented by the chosen candidate pair p. When the feasibility test
fails, the algorithm backtracks to the previous state s and tries another candidate. When
M(s) covers all the vertices of H, a match is found and the search stops, otherwise the
search will continue until all the candidate pairs of P (s) have been tried.

7Image from [14] http://www.cs.mcgill.ca/∼esyria/publications/dissertation.pdf

19

The preferred order is implemented by first executing the preferred function for the
vertices connected with outgoing edges, then via the incoming edges and finally by calling
the leastPreferred function, which represent the not connected edges. (The functions can be
found under the matchVF2 function in the patternMatching.py file1.)

5.7.1. Feasibility test

The test runs on s′ = s ∪ p tests the following three criteria in the mentioned order:

1. check if the new mapping M(s′) is a valid isomorphism (by checking if the edges
between vp, its adjacent vertices in MH(s′) and the edges between wpp and its adjacent
vertices in MG(s′) correspond,

2. check if the number of external edges between MH(s′) and NH(s′) is less than or equal
to the number of external edges between MG(s′) and NG(s′),

3. check if the number of external edges between NH(s′) and V H(s′) is less than or equal
to the number of external edges between NG(s′) and V G(s′).

Doing this allows VF2 to reduce the search space and ensures that no incompatibilities will
occur in the future search steps.

The feasibility test is implemented in the feasibilityTest function under the Ullmann
function in the patternGraph.py file1. We do take a small coding short-cut by reusing the
naive implementation to check if there is a valid mapping between the matched vertices and
the adjacent vertices.

5.7.2. Metaphorical

The algorithm effectively matches one vertex. It then stepwise expands the match with
vertices of the highest priority (first directly connected via outgoing edges, to the already
matched sub-graph, then directly connected via incoming edges and lastly the not, to the
current mapping, connected vertices). The feasibility test is an optimization that tries to
detect as soon as possible that the current search branch will not result in a valid match.

5.7.3. VF2 Efficiency and Extension Options

Experimental results [16] show that for larger graphs VF2 preforms better than Ullmann.
The time complexity of VF2 in the best case is O(N2), as N = |VH |+ |VG| search state will
be visited. In the worst case there are N ! search states, resulting in a time complexity of
O(N !N). For both cases, VF2 is a linear order of magnitude more efficient than Ullmann.
Another advantage of VF2 is that its spatial complexity is linear, while Ullmann’s is cubic
(because of the adjacency matrices).

The main difference between Ullmann and VF2 is within the backtracking step. While
Ullmann only compares pairs of adjacent vertices, VF2 compares the vertex with its neigh-
bourhood. Furthermore, Ullmann’s M* matrix verifies if the pair of vertices, in the match,
is semantically compatible, while VF2’s feasibility test ensures a correct structure of the
match.

As VF2 and Ullmann focus on different optimizations, one can combine [17] the two
algorithms for lowering the time complexity.

20

6. Ullmann vs VF2

6.1. Depth First Search

Ullmann first build a M* matrix that stores the possible mappings from vertices from the
pattern to vertices from the graph. As it incorporated the degree of the vertices, vertices
from the graph that have less outgoing and/or incoming edges than the vertex from the
pattern are excluded from its possible mapping and will not be used to try and map it.
(This does not take into account the semantic attributes of the edges.)

VF2 on the other hand does not build such a matrix but verifies this when trying to
create a mapping from the pattern vertex to the graph vertex. This does take into account
the semantic attributes of the edges.

6.2. Matching order

In the matching phase, Ullmann sorts the vertices based on its amount of edges, creating
a total order. It preference the vertex with the most edges. The reason behind this is that
the vertices with more edges will fail sooner, thus resulting in increased efficiency.

VF2 preference is not so specific, it prefers the adjacent vertices of the currently matched
vertices connected via outgoing edges, then the ones that are connected via incoming edges
and finally the not connected vertices8.

6.3. Pruning the search space

Ullmann’s refinement procedure test whether all remaining (currently viewed as) possible
mappings (from M*) their neighbours can be correctly matched. If not, it removes it from
M*. This means that Ullmann’s refinement procedure not only can stop the current branch,
but also limit future possible mappings.

Contrary to Ullmann, VF2 can only stop the current branch and backtrack.

7. Generating and visualizing graphs, patterns and found occurences

The implementation includes a GraphGenerator function in the generator.py file that
can generate random graphs and random patterns for that graph. It is called in the main.py
file. The printGraph function in the graphToDot.py file saves your current host graph and
pattern to “.dot” files. Which can be visualized by GraphViz9.

If you call the printGraph function with the matched vertices and edges, it will highlight
the occurrence in the visualization.

8Combining the two might lead to even greater efficiency.
9http://graphviz.org

21

8. Conclusion

In this paper we have seen the two main different categories for efficient model transfor-
mations (for pattern matching and solving the sub-graph homomorphism problem): search
plans and constraint satisfaction problems (CSP’s). We first explained search plans and
presented the workings of such an algorithm. We also listed some possible extensions for
improving its performance. We then explained the definition of CSP’s and their use cases.
Lastly we presented the workings of well-known and some of the most efficient algorithms
for pattern matching (and solving the sub-graph homomorphism problem) as CSP’s, namely
Ullmann and VF2. In both cases we again listed some possible extensions for improving
their performance.

References

[1] H. Bunke, T. Glauser, T.-H. Tran, An efficient implementation of graph grammars based on the rete
matching algorithm, in: Graph Grammars and Their Application to Computer Science, Springer, 1991,
pp. 174–189.

[2] M. Kurt, Graph algorithms and np-completeness (1984).
[3] G. V. Batz, M. Kroll, R. Geiß, A first experimental evaluation of search plan driven graph pattern

matching, in: Applications of Graph Transformations with Industrial Relevance, Springer, 2008, pp.
471–486.

[4] J. Edmonds, Optimum branchings, Journal of Research of the National Bureau of Standards B 71 (4)
(1967) 233–240.

[5] A. Zündorf, Graph pattern matching in progres, in: Graph Grammars and Their Application to Com-
puter Science, Springer, 1996, pp. 454–468.

[6] R. Geiß, G. V. Batz, D. Grund, S. Hack, A. Szalkowski, Grgen: A fast spo-based graph rewriting tool,
in: Graph Transformations, Springer, 2006, pp. 383–397.

[7] G. Varró, K. Friedl, D. Varró, Adaptive graph pattern matching for model transformations using
model-sensitive search plans, Electronic Notes in Theoretical Computer Science 152 (2006) 191–205.

[8] C. Â. G. Gomes, A framework for efficient model transformations.
[9] J. Larrosa, G. Valiente, Graph pattern matching using constraint satisfaction, in: Proc. Joint APPLI-

GRAPH/GETGRATS Worksh. Graph Transformation Systems, 2000, pp. 189–196.
[10] O. Angelsmark, Constructing algorithms for constraint satisfaction and related problems: Methods and

applications.
[11] M. Rudolf, Utilizing constraint satisfaction techniques for efficient graph pattern matching, in: Theory

and Application of Graph Transformations, Springer, 2000, pp. 238–251.
[12] E. B. Krissinel, K. Henrick, Common subgraph isomorphism detection by backtracking search, Software:

Practice and Experience 34 (6) (2004) 591–607.
[13] J. R. Ullmann, An algorithm for subgraph isomorphism, Journal of the ACM (JACM) 23 (1) (1976)

31–42.
[14] E. Syriani, A multi-paradigm foundation for model transformation language engineering, Ph.D. thesis,

McGill University (2011).
[15] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub) graph isomorphism algorithm for matching

large graphs, Pattern Analysis and Machine Intelligence, IEEE Transactions on 26 (10) (2004) 1367–
1372.

[16] P. Foggia, C. Sansone, M. Vento, A database of graphs for isomorphism and sub-graph isomorphism
benchmarking, in: Proc. of the 3rd IAPR TC-15 International Workshop on Graph-based Representa-
tions, 2001, pp. 176–187.

[17] M. Provost, Himesis: A hierarchical subgraph matching kernel for model driven development, in:
Masters Abstracts International, Vol. 45, 2006.

22

