
Assignment 1

Railway Modelling in metaDepth

Simon Van Mierlo
simon.vanmierlo@uantwerpen.be

1 Practical Information

The goal of this assignment is to design a domain-specific modelling language
(formalism) and subsequently to model railways in that language in the
textual modelling tool metaDepth. The different parts of this assignment
are listed below:

1. Implement the abstract syntax of your language in metaDepth.

2. Enrich the abstract syntax with constraints (using EOL) so that you
can check that every model is well-formed.

3. Create some railway models that are representative for all the features
in your language. Some should be valid models (check by verifying
them), and some should be invalid, to show that your constraints are
correct.

4. Write operational semantics (using EOL) that simulate the railway
system.

Write a report that includes a clear explanation of your complete so-
lution, the modelling choices you made, as well as an explanation of your
testing process. Also mention possible difficulties you encountered during
the assignment, and how you solved them. You will have to complete this
assignment in groups of 2. Submit your assignment (report in pdf, abstract
syntax definition, example models, and simulator) on Blackboard before Fri-
day, October 14, 13:00h.

Contact Simon Van Mierlo (simon.vanmierlo@uantwerpen.be) if you
have a problem.

2 Requirements

This section lists the requirements of the railway domain-specific language.
They are split into two sections: one on abstract syntax, and one on opera-
tional semantics. Make sure to test each requirement with test models!

1

simon.vanmierlo@uantwerpen.be
mailto:simon.vanmierlo@uantwerpen.be


2.1 Abstract Syntax

The abstract syntax of the DSL captures its syntax and static semantics.
The requirements of the railway language are listed below:

• A railway system consists of the infrastructure with the trackwork, the
signalling equipment, and the stations, as well as the trains driving on
the trackwork and through the stations.

• A railway network consists of a number of interconnected railway seg-
ments. The types of segments your language needs to support are
listed below:

– Straights—the most trivial segment, allows a train to move
straight. Has one incoming and one outgoing segment.

– Turnouts—allows a train to go straight, or take a diverging route
to another track connected to the segment. Has one incoming
segment and two outgoing segments. The direction of a turnout
can be changed—it’s either in straight mode, meaning the train
will take the straight route, or in diverging mode, meaning the
train will take the diverging route.

– Junctions—joins two segments. Has two incoming segments
and one outgoing segment. The direction of a junction can be
changed—it’s either in straight or diverging mode, selecting the
train which can enter the segment.

– Stations—like straights, but can also be at the end or beginning
of a track. Has zero or one incoming and zero or one outgoing
segment, but is always connected to at least one track. Each
station has a unique name, that starts with a single upper case
letter followed by zero or more lower case letters, and ends with
zero or more numbers.

• Although an undesirable property at runtime, your language should
allow for more than one train to be present on a railway segment.

• A railway network does not allow loops (i.e., it should never be possible
to start at a station, move in one direction, and end up at that same
station). Tip: to model this constraint, use EOL’s closure function,
as you have to write it as one line of code.

• The signalling equipment of the railway system consists of lights. These
lights control the traffic on a segment and can be in two states—red
means traffic on that segment needs to wait, green means the traffic
can pass. Segments only allow one-way traffic.

• Trains have a unique identifier, that start with an upper case letter,
followed by four numbers. A train can be on at most one segment.

2



Each train has an associated schedule. This schedule is modelled in a second
domain-specific language. We do this because we want to load multiple
schedules for the same railway network. The requirements for the scheduling
language are listed below:

• A schedule is associated to a train by referring to the name of the
train.

• The schedule of a train tells it where to go—it contains a sequence of
consecutive steps. The ‘start’ step contains the name of the station
where the train will start. It has no incoming steps and one outgo-
ing step. The ‘end’ step contains the name of the station where the
train will stop. It has one incoming step and no outgoing steps. The
start and end steps are mandatory. In between, the train has to be
instructed to take the diverging or straight route when it encounters a
turnout. These ‘in-between’ steps have exactly one incoming and one
outgoing step.

• Each train needs exactly one schedule.

• Each schedule needs exactly one train.

2.2 Operational Semantics

In this part of the assignment, you will model the semantics of a “control
room” that regulates the flow of trains on the railway network. The goal
is to get each train to its destination safely. This means that the control
room needs to make sure two trains can never be on the same track, as well
as switching turnouts and junctions to the correct position. More detailed
rules are listed below:

• The simulation is broken up into a number of “steps”. In each step, the
control room first sets all lights to the correct “mode” and switches
the direction of turnouts and junctions. After that, all trains move
(concurrently) to the next segment, if allowed.

• In the initial step, all trains are placed in their start station.

• A train is allowed to move to the next segment if the light on its current
segment is set to green. If the light is red, the train has to wait.

• If a train is on a turnout, it moves in the direction the turnout is set
to. In other words, a train has no access to its schedule and follows
the directions set by the control room.

• The control room iterates over all segments that contain a train. If no
train is present on the segment the train wants to move to, it sets the
light of the segment the train is currently on to green.

3



Antwerpen

Brussel

Gent

Leuven

E2718: Antwerpen -> Straight -> Gent
P3142: Brussel -> Diverging -> Leuven

Figure 1: An example Railway model.

• If a train is on a turnout, the control room switches the direction to
where the train wants to go, by looking at the next step in the schedule
of the train. It is an error if there is no step (the schedule has reached
the end) when a train wants to leave a turnout.

• In case of two trains wanting to enter a junction at the same time, the
control room chooses one randomly.

• A train can only enter a junction if the direction of the junction is set
correctly.

• When a train reaches its end station, it is removed from the model.

Your simulation should produce a textual trace. The trace associated
with the model shown in Figure 1.

E2718 | s t a r t s at s t a t i o n : Antwerpen
P3142 | s t a r t s at s t a t i o n : Brus se l
−−−===−−−=== Step 1 ===−−−===−−−
E2718 | moves forward past the green l i g h t
P3142 | moves forward past the green l i g h t
−−−===−−−=== Step 2 ===−−−===−−−
E2718 | waits f o r a red l i g h t
P3142 | moves forward past the green l i g h t
−−−===−−−=== Step 3 ===−−−===−−−
E2718 | moves forward past the green l i g h t
P3142 | moves forward past the green l i g h t and

l e a v e s the junc t i on d iv e rg ing
P3142 | a r r i v e s at s t a t i o n : Leuven
−−−===−−−=== Step 4 ===−−−===−−−
E2718 | moves forward past the green l i g h t and

l e a v e s the junc t i on s t r a i g h t
E2718 | e n t e r s s t a t i o n : Gent
−−−===−−−=== Step 5 ===−−−===−−−

4



E2718 | moves forward past the green l i g h t
E2718 | a r r i v e s at s t a t i o n : Brugge

3 Useful Links

• metaDepth download: http://msdl.cs.mcgill.ca/people/hv/teaching/
MSBDesign/assignments/metaDepth.jar

• metaDepth main page: http://metadepth.org/

• metaDepth information:

– http://metadepth.org/papers/TOOLS.pdf

– http://metadepth.org/Documentation.html

– http://metadepth.org/Examples.html

– The examples we created during the lecture: FSA.mdepth and
FSAsim.mdepth

– MetaDepthEOL.txt (an ever updating list of remarks—contribute
by emailing your issues!)

• Epsilon book: [PDF]. For this exercise, you need chapter 3 on the
Epsilon Object Language (EOL).

5

http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/assignments/metaDepth.jar
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/assignments/metaDepth.jar
http://metadepth.org/
http://metadepth.org/papers/TOOLS.pdf
http://metadepth.org/Documentation.html
http://metadepth.org/Examples.html
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/examples/FSA.mdepth
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/examples/FSAsim.eol
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/assignments/MetaDepthEOL.txt
https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/plain/doc/org.eclipse.epsilon.book/EpsilonBook.pdf

	Practical Information
	Requirements
	Abstract Syntax
	Operational Semantics

	Useful Links

